Linezolid effects on bacterial toxin production and host immune response: review of the evidence.

Curr Ther Res Clin Exp

Pfizer Global Biotherapeutic Technologies, Cambridge, Massachusetts.

Published: June 2012

Background: Linezolid is active against a broad range of gram-positive pathogens and has the potential to also affect production of bacterial toxins and host immune function.

Objective: To assess the evidence for direct effects of linezolid on bacterial toxin synthesis and modulation of host immune responses.

Methods: Literature searches were performed of the PubMed and OVID databases. Reviews and non-English language articles were excluded. Articles with information on the effect of linezolid on bacterial toxin synthesis and immune responses were selected for further review, and data were summarized.

Results: Substantial in vitro evidence supports effects of linezolid on bacterial toxin production; however, the strength of the evidence and the nature of the effects are mixed. In the case of Staphylococcus aureus, repeated observations support the inhibition of production of certain staphylococcal toxins (Panton-Valentine leukocidin, protein A, and α- and β-hemolysin) by linezolid, whereas only solitary reports indicate inhibition (toxic shock syndrome toxin-1, coagulase, autolysins, and enterotoxins A and B) or stimulation (phenol-soluble modulins) of toxin production by linezolid. In the case of Streptococcus pyogenes, there are solitary reports of linezolid inhibition (protein M, deoxyribonuclease, and streptococcal pyrogenic exotoxins A, B, and F) or stimulation (immunogenic secreted protein 2 and streptococcal inhibitor of complement-mediated lysis) of toxin production, whereas published evidence for effects on streptolysin O production is conflicting. In vitro data are limited, but suggest that linezolid might also have indirect effects on host cytokine expression through inhibition of bacterial production of toxins. In vivo data from preclinical animal studies and a single clinical study in humans are limited and equivocal insofar as a potential role for linezolid in modulating the host inflammatory response; this is due in part to the difficulty in isolating antimicrobial effects and toxin synthesis inhibitory effects of linezolid from any secondary effects on host inflammatory response.

Conclusions: Available evidence supports the possibility that linezolid can inhibit, and in some cases stimulate, toxin production in clinically relevant pathogens. However, more research will be needed to determine the potential clinical relevance of those findings for linezolid.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954010PMC
http://dx.doi.org/10.1016/j.curtheres.2012.04.002DOI Listing

Publication Analysis

Top Keywords

toxin production
20
bacterial toxin
16
linezolid
13
host immune
12
effects linezolid
12
linezolid bacterial
12
toxin synthesis
12
production
9
toxin
8
effects
8

Similar Publications

T-2 toxin is a highly toxic fungal toxin that threatens humans and animals' health. As a major detoxifying and metabolic organ, the kidney is also a target of T-2 toxin. This article reviews T-2 toxin nephrotoxicity research progress, covering renal structure and function damage, nephrotoxicity mechanisms, and detoxification methods to future research directions.

View Article and Find Full Text PDF

Formaldehyde (FA) is a hazardous pollutant causing acute and chronic poisoning in humans. While plants provide a natural method of removing FA pollution, their ability to absorb and degrade FA is limited. To improve the ability of plants to degrade FA, we introduced the E.

View Article and Find Full Text PDF

Simulation of fluid flow with Cuprophan and AN69ST membranes in the dialyzer during hemodialysis.

Biomed Phys Eng Express

January 2025

Ingeniería y Tecnología, Universidad Nacional Autonoma de Mexico Facultad de Estudios Superiores Cuautitlan, Av. 1o de Mayo S/N, Santa María las Torres, Campo Uno, 54740 Cuautitlán Izcalli, Edo. de Méx., Cuautitlan Izcalli, Estado de México, 54740, MEXICO.

Hemodialysis is a crucial procedure for removing toxins and waste from the body when kidneys fail to perform this function effectively. This study addresses the need to improve the efficiency and biocompatibility of membranes used in dialyzers. We simulate fluid flow through two types of membranes, Cuprophan (cellulosic) and AN69ST (synthetic), to understand the complex mechanisms involved and quantify key variables such as pressure, concentration, and flow.

View Article and Find Full Text PDF

In critically ill patients, the occurrence of multidrug-resistant infection is a significant concern, given its ability to acquire multidrug-resistant, form biofilms and secrete toxic effectors. In Brazil, limited data are available regarding the prevalence of dissemination, and the impact of the type III secretion system (T3SS) on toxin production and biofilm formation in clinical isolates of . This study investigates the dissemination of virulent harbouring the and genes, the presence of T3SS genes and their biofilm-forming capability.

View Article and Find Full Text PDF

Diabetes nephropathy (DN) is a severe diabetic chronic microvascular complication and the major cause of end-stage renal disease (ESRD). Our study aimed to investigate the effects of isoliquiritigenin (ISL) a natural flavonoid compound on DN and to explore the underlying mechanisms. The db/db mice were received intragastric treatments of ISL (5, 10, or 20 mg/kg), vehicle or positive drug metformin (300 mg/kg) once a day for 12 weeks, and the db/m mice treated with vehicle were used as controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!