MiR-155 (-/-) mice are highly resistant to experimental autoimmune encephalomyelitis (EAE), while Pdcd1 (-/-) mice develop a more severe form of the disease. To determine the conflicting roles of these two molecules in the disease, we generated miR-155 (-/-) Pdcd1 (-/-) double knockout (DKO) mice. We found that ablation of programmed cell death protein 1 (PD-1) expression in miR-155-deficient mice restored the susceptibility to EAE. The increased severity of the disease in DKO mice was accompanied by an enhanced T-cell infiltration into the brain as well as an increased production of pro-inflammatory cytokines IFN-γ and IL-17. Furthermore, the major contribution of the DKO to EAE was T-cell intrinsic since adoptive transfer of CD4(+) T cells from DKO donors promoted the disease in lymphopenic recipients. These results define PD-1 deficiency in miR-155 (-/-) mice as a promoting factor of autoimmune inflammation by increasing antigen-driven T-cell expansion and infiltration.

Download full-text PDF

Source
http://dx.doi.org/10.1093/intimm/dxu043DOI Listing

Publication Analysis

Top Keywords

mir-155 -/-
12
-/- mice
12
experimental autoimmune
8
autoimmune encephalomyelitis
8
mir-155-deficient mice
8
pdcd1 -/-
8
dko mice
8
mice
7
-/-
5
pd-1 deletion
4

Similar Publications

Lipophagy and epigenetic alterations are related to metabolic dysfunction-associated steatotic liver disease progression in an experimental model.

World J Hepatol

December 2024

Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil.

Background: Genetic and epigenetic alterations are related to metabolic dysfunction-associated steatotic liver disease (MASLD) pathogenesis.

Aim: To evaluate micro (mi)RNAs and lipophagy markers in an experimental model of metabolic dysfunction-associated steatohepatitis (MASH).

Methods: Adult male Sprague Dawley rats were randomized into two groups: Control group ( = 10) fed a standard diet; and intervention group ( = 10) fed a high-fat-choline-deficient diet for 16 weeks.

View Article and Find Full Text PDF

MicroRNAs and long non-coding RNAs In T-cell lymphoma: Mechanisms, pathway, therapeutic opportunities.

Pathol Res Pract

December 2024

Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia. Electronic address:

T-cell lymphomas represent non-Hodgkin lymphomas distinguished by the uncontrolled proliferation of malignant T lymphocytes. Classifying these neoplasms and the ongoing investigation of their underlying biological mechanisms remains challenging. Significant subtypes encompass peripheral T-cell lymphomas, anaplastic large-cell lymphomas, cutaneous T-cell lymphomas, and adult T-cell leukemia/lymphoma.

View Article and Find Full Text PDF

Liposarcoma is one of the most prevalent forms of soft tissue sarcoma, and its prognosis is highly dependent on its molecular subtypes. Non-coding RNAs (ncRNAs) like microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) can bind various cellular targets to regulate carcinogenesis. By affecting the expressions and activities of their downstream targets post-transcriptionally, dysregulations of miRNAs can alter different oncogenic signalling pathways, mediating liposarcoma progression.

View Article and Find Full Text PDF

Evaluating MicroRNAs as Diagnostic Tools for Lymph Node Metastasis in Breast Cancer: Findings from a Systematic Review and Meta-Analysis.

Crit Rev Oncol Hematol

December 2024

GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Liquid biopsy and Cancer Interception group, PTS Granada, Avenida de la Ilustración 114, 18016, Granada, Spain; Biomedical Research Institute IBS-Granada. Avda. de Madrid, 15, 18012, Granada, Spain; Unidad de Patología Mamaria. Servicio de Cirugía General y Aparato Digestivo. Hospital Universitario San Cecilio. Granada; Integral Oncology Division, Virgen de las Nieves University Hospital, Av. Dr. Olóriz 16, 18012, Granada, Spain; Molecular lab. Unit of Pathological Anatomy. University Hospital Virgen de las Nieves. 18016. Granada, Spain. Electronic address:

Lymph node metastasis (LNM) significantly affects the prognosis and clinical management of breast cancer (BC) patients. This systematic review and meta-analysis aim to identify microRNAs (miRNAs) associated with LNM in BC and evaluate their potential diagnostic and prognostic value. Following PRISMA guidelines, a comprehensive literature search was conducted in PubMed, Web of Science, and SCOPUS databases, to assess the role of miRNAs in LNM BC.

View Article and Find Full Text PDF

Dual DNAzyme amplification-based colorimetric sensing assay for the identification and quantification of tumor-associated miRNAs.

Talanta

December 2024

State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China. Electronic address:

Herein, we present a colorimetric sensing strategy for the identification and quantification of tumor-associated miRNAs based on dual DNAzyme amplification. In this sensing ensemble, the substrate portion of the Pb-dependent 8-17 DNAzyme combines with the G-quadruplex portion to form a hairpin substrate strand. The two split 8-17 DNAzyme strands are partially complementary to the substrate strand and serve as a recognition unit for binding the target miRNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!