Unlabelled: Human polyomavirus 9 (HPyV9) is a closely related homologue of simian B-lymphotropic polyomavirus (LPyV). In order to define the architecture and receptor binding properties of HPyV9, we solved high-resolution crystal structures of its major capsid protein, VP1, in complex with three putative oligosaccharide receptors identified by glycan microarray screening. Comparison of the properties of HPyV9 VP1 with the known structure and glycan-binding properties of LPyV VP1 revealed that both viruses engage short sialylated oligosaccharides, but small yet important differences in specificity were detected. Surprisingly, HPyV9 VP1 preferentially binds sialyllactosamine compounds terminating in 5-N-glycolyl neuraminic acid (Neu5Gc) over those terminating in 5-N-acetyl neuraminic acid (Neu5Ac), whereas LPyV does not exhibit such a preference. The structural analysis demonstrated that HPyV9 makes specific contacts, via hydrogen bonds, with the extra hydroxyl group present in Neu5Gc. An equivalent hydrogen bond cannot be formed by LPyV VP1.
Importance: The most common sialic acid in humans is 5-N-acetyl neuraminic acid (Neu5Ac), but various modifications give rise to more than 50 different sialic acid variants that decorate the cell surface. Unlike most mammals, humans cannot synthesize the sialic acid variant 5-N-glycolyl neuraminic acid (Neu5Gc) due to a gene defect. Humans can, however, still acquire this compound from dietary sources. The role of Neu5Gc in receptor engagement and in defining viral tropism is only beginning to emerge, and structural analyses defining the differences in specificity for Neu5Ac and Neu5Gc are still rare. Using glycan microarray screening and high-resolution protein crystallography, we have examined the receptor specificity of a recently discovered human polyomavirus, HPyV9, and compared it to that of the closely related simian polyomavirus LPyV. Our study highlights critical differences in the specificities of both viruses, contributing to an enhanced understanding of the principles that underlie pathogen selectivity for modified sialic acids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4093890 | PMC |
http://dx.doi.org/10.1128/JVI.03455-13 | DOI Listing |
Carbohydr Polym
March 2025
Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:
The major hurdle of xenotransplantation is the immune response triggered by human natural antibodies interacting with carbohydrate antigens on the transplanted animal organ. Specifically, terminal glycoprotein motifs such as galactose-α1,3-galactose (α-Gal) and N-glycolylneuraminic acid (Neu5Gc) are significant obstacles. Little is known about the abundance and compositions of asparagine-linked complex carbohydrates (N-glycans) carrying these motifs in mammalian organs.
View Article and Find Full Text PDFJ Inherit Metab Dis
January 2025
Department of Internal Medicine, Division of Endocrinology and Metabolic Disease, Maastricht University Medical Center+, Maastricht, The Netherlands.
Hereditary fructose intolerance (HFI) is characterized by liver damage and a secondary defect in N-linked glycosylation due to impairment of mannose phosphate isomerase (MPI). Mannose treatment has been shown to be an effective treatment in a primary defect in MPI (i.e.
View Article and Find Full Text PDFBioelectrochemistry
November 2024
Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics CAS, v.v.i., Královopolská 135, 612 00 Brno, Czech Republic.
Recently, it was described that neutral glycans can be distinguished from those containing sialic acid at the mercury electrode after modification with osmium(VI) N,N,N',N'-tetramethylethylenediamine (Os(VI)tem). Our work shows the possibility of studying glycans and glycoproteins at pyrolytic graphite electrodes depending on thepresence of sialic acid. Short glycans, glycans released from glycoproteins, and glycoproteins themselves yielded similar voltammetric responses after their modification by Os(VI)tem.
View Article and Find Full Text PDFMicrob Cell Fact
November 2024
Virology Department, Pasteur Institute of Iran, Tehran, Iran.
Background: To discover effective drugs for treating Influenza (a disease with high annual mortality), large amounts of recombinant neuraminidase (NA) with suitable catalytic activity are needed. However, the functional activity of the full-length form of this enzyme in the bacterial host (as producing cells with a low cost) in a soluble form is limited. Thus, in the present study, a truncated form of the neuraminidase (derived from California H1N1 influenza strain) was designed, then biosynthesized in Escherichia coli BL21 (DE3), Shuffle T7, and SILEX systems.
View Article and Find Full Text PDFChembiochem
December 2024
Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
Glycoconjugates are a vast class of biomolecules implicated in biological processes important for human health and disease. The structural complexity of glycoconjugates remains a challenge to deciphering their precise biological roles and for their development as biomarkers and therapeutics. Human glycoconjugates on the outside of the cell are modified with sialic (neuraminic) acid residues at their termini.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!