At least two conducting systems are well documented in cubomedusae. A variably diffuse network of large neurons innervates the swim musculature and can be visualized immunohistochemically using antibodies against α- or β-tubulin. Despite the non-specificity of these antibodies, multiple lines of evidence suggest that staining highlights the primary motor networks. These networks exhibit unique neurite distributions among the muscle sheets in that network density is greatest in the perradial frenula, where neurites are oriented in parallel with radial muscle fibers. This highly innervated, buttress-like muscle sheet may serve a critical role in the cubomedusan mechanism of turning. In scyphomedusae, a second subumbrellar network immunoreactive to antibodies against the neuropeptide FMRFamide innervates the swim musculature, but it is absent in cubomedusae. Immunoreactivity to FMRFamide in cubomedusae is mostly limited to a small network of neurons in the pacemaker region of the rhopalia, the pedalial apex at the nerve ring junction, and a few neuron tracts in the nerve ring. However, FMRFamide-immunoreactive networks, as well as tubulin-immunoreactive networks, are nearly ubiquitous outside of the swim muscle sheets in the perradial smooth muscle bands, manubrium, pedalia, and tentacles. Here we describe in detail the peripheral nerve nets of box jellyfish on the basis of immunoreactivity to the antibodies above. Our results offer insight into how the peripheral nerve nets are organized to produce the complex swimming, feeding, and defensive behaviors observed in cubomedusae.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/BBLv226n1p41 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!