Environmental conditions can influence the physiology of marine organisms and have important implications for their reproductive performance and capacity to supply new recruits. This study examined the seasonal reproductive patterns of the coral Montipora capitata in habitats exposed to different sedimentation regimes. Although M. capitata is a main reef-building coral in the Hawaiian Archipelago, little is known about the gametogenic cycle and reproductive ecology of this important species. Our results indicate that gamete production in M. capitata is a resilient process; no differences in gamete development or fecundity were observed among sites with very different sedimentation regimes. The gametogenic cycle of M. capitata lasts between 10 and 11 months, with spawning occurring over 3-5 months during warmer months (May-September). Oocytes were found throughout the year, but spermatocysts were only found April-August. The largest increases in oocyte size occurred during February to May, the months when solar radiation increased rapidly. The largest variation in oocyte sizes was found during July and August; during this period individual colonies contained mature oocytes for immediate spawning and new oocytes being formed for spawning the next year. The capacity of M. capitata to reproduce in areas with high sedimentation is an interesting finding highlighting the potential of the species for acclimatization, adaptation, or both. Despite this optimistic finding, the management of terrestrial runoff and the restoration of habitat quality for corals remains a top priority to ensure the renewal and maintenance of coral populations.

Download full-text PDF

Source
http://dx.doi.org/10.1086/BBLv226n1p8DOI Listing

Publication Analysis

Top Keywords

reef-building coral
8
coral montipora
8
montipora capitata
8
sedimentation regimes
8
gametogenic cycle
8
capitata
6
sedimentation
4
sedimentation reproductive
4
reproductive biology
4
biology hawaiian
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!