Green synthesized iron oxide nanoparticles effect on fermentative hydrogen production by Clostridium acetobutylicum.

Appl Biochem Biotechnol

Department of Biotechnology, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India.

Published: May 2014

A green synthesis of iron oxide nanoparticles (FeNPs) was developed using Murraya koenigii leaf extract as reducing and stabilizing agent. UV-vis spectra show that the absorption band centred at a wavelength of 277 nm which corresponds to the surface plasmon resonances of synthesized FeNPs. Fourier transform infrared spectroscopy spectrum exhibits that the characteristic band at 580 cm(-1) is assigned to Fe-O of γ-Fe2O3. Transmission electron microscopy image confirms that the spherical with irregular shaped aggregates and average size of nanoparticles was found to be ∼59 nm. The effect of synthesized FeNPs on fermentative hydrogen production was evaluated from glucose by Clostridium acetobutylicum NCIM 2337. The hydrogen yield in control experiment was obtained as 1.74 ± 0.08 mol H2/mol glucose whereas the highest hydrogen yield in FeNPs supplemented experiment was achieved as 2.33 ± 0.09 mol H2/mol glucose at 175 mg/L of FeNPs. In addition, the hydrogen content and hydrogen production rate were also increased from 34 ± 0.8 to 52 ± 0.8 % and 23 to 25.3 mL/h, respectively. The effect of FeNPs was compared with supplementation of FeSO4 on fermentative process. The supplementation of FeNPs enhanced the hydrogen production in comparison with control and FeSO4. The supplementation of FeNPs led to the change of the metabolic pathway towards high hydrogen production due to the enhancement of ferredoxin activity. The fermentation type was shifted from butyrate to acetate/butyrate fermentation type at the addition of FeNPs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-014-0843-0DOI Listing

Publication Analysis

Top Keywords

hydrogen production
20
fenps
9
iron oxide
8
oxide nanoparticles
8
hydrogen
8
fermentative hydrogen
8
clostridium acetobutylicum
8
synthesized fenps
8
hydrogen yield
8
supplementation fenps
8

Similar Publications

Utilization of Chlorella vulgaris methyl ester blend with diethyl ether to mitigate emissions of an unaltered single cylinder ci engine.

Environ Sci Pollut Res Int

January 2025

Engine Testing Laboratory, Department of Automobile Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India.

The present work emphasizes the viability of methyl ester production, characterization, and utilization of third-generation biofuel from Chlorella vulgaris microalgae. The presence of methyl oleate (CHO) in the Chlorella vulgaris methyl ester (CVME) algae signifies the existence of higher oxidation stability and prone to peroxidation. The single-stage transesterified CVME algae contains majorly (C-H) functional group trailed by (C = O), (C-O), (O-CH), (C-O-C) with the elemental compositions of 66.

View Article and Find Full Text PDF

Amorphous solid dispersion (ASD) is one of the most studied strategies for improving the dissolution performance of poorly water-soluble drugs, but ASDs often have low drug loadings, thereby necessitating larger dosage sizes. This study intended to create Soluplus® (SOL)-based microparticle ASDs with high drug loading (up to 60 w/w%) and long-term stability (at least 16 months) using electrospraying to enhance the dissolution of poorly water-soluble celecoxib (CEL). X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses showed that the electrosprayed SOL-CEL microparticles were amorphous, and Fourier transform infrared spectroscopy (FTIR) data indicated the presence of hydrogen bonding between SOL and CEL in the microparticles, which helped stabilize the ASDs.

View Article and Find Full Text PDF

Confinement-induced Ni-based MOF formed on TiCT MXene support for enhanced capacitive deionization of chromium(VI).

Sci Rep

January 2025

School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China.

MXenes, as a novel two-dimensional lamellar material, has attracted much attention. However, MXenes lamellar are prone to collapse and stacking under hydrogen bonding and interlayer van der Waals forces, which affects their electrochemical and capacitive deionization performance. A three-dimensional Ni-1,3,5-benzenetricarboxylate/TiCT (Ni-BTC/TiCT) composite electrode material was developed to enhance the electrochemical and capacitive deionization performance.

View Article and Find Full Text PDF

In subsurface methanogenic ecosystems, the ubiquity of methylated-compound-using archaea-methylotrophic methanogens-implies that methylated compounds have an important role in the ecology and carbon cycling of such habitats. However, the origin of these chemicals remains unclear as there are no known energy metabolisms that generate methylated compounds de novo as a major product. Here we identified an energy metabolism in the subsurface-derived thermophilic anaerobe Zhaonella formicivorans that catalyses the conversion of formate to methanol, thereby producing methanol without requiring methylated compounds as an input.

View Article and Find Full Text PDF

The rational design of non-fullerene acceptors (NFAs) with both high crystallinity and photoluminescence quantum yield (PLQY) is of crucial importance for achieving high-efficiency and low-energy-loss organic solar cells (OSCs). However, increasing the crystallinity of an NFA tends to decrease its PLQY, which results in a high non-radiative energy loss in OSCs. Here we demonstrate that the crystallinity and PLQY of NFAs can be fine-tuned by asymmetrically adapting the branching position of alkyl chains on the thiophene unit of the L8-BO acceptor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!