Within mixed-genotype infections of malaria parasites (Plasmodium), the number of genetic clones present is associated with variation in important life history traits of the infection, including virulence. Although the number of clones present is important, how the proportion of those clones varies over time is poorly known. Clonal proportions of the lizard malaria parasite, Plasmodium mexicanum, were assessed in naturally infected free-ranging lizards followed in a mark-recapture program over as long as two warm seasons, the typical life span of the lizard. Clonal proportions were determined by amplifying two microsatellite markers, a method previously verified for accuracy. Most blood samples had been stored for over a decade, so a verification test determined that these samples had not degraded. Although the environment experienced by the parasite (its host) varies over the seasons and transmission occurs over the entire warm season, 68% of infections were stable over time, harboring a single clone (37% of infections) or multiple clones changing only 1-12% maximum comparing any two samples (31% of infections). The maximum change seen in any infection (comparing any two sample periods) was only 30%. A new clone entered three infections (only once successfully), and a clone was lost in only three infections. These results mirror those seen for a previous study of experimentally induced infections that showed little change in relative proportions over time. The results of this study, the first look at how clonal proportions vary over time for any malaria parasite of a nonhuman vertebrate host for natural infections, were surprising because experimental studies show clones of P. mexicanum appear to interact, yet relative proportions of clones typically remain constant over time.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00436-014-3854-4DOI Listing

Publication Analysis

Top Keywords

malaria parasite
12
clonal proportions
12
infections
9
natural infections
8
infections malaria
8
parasite plasmodium
8
plasmodium mexicanum
8
three infections
8
relative proportions
8
clones
6

Similar Publications

Background: Malaria is a critical and potentially fatal disease caused by the Plasmodium parasite and is responsible for more than 600,000 deaths globally. Early and accurate detection of malaria parasites is crucial for effective treatment, yet conventional microscopy faces limitations in variability and efficiency.

Methods: We propose a novel computer-aided detection framework based on deep learning and attention mechanisms, extending the YOLO-SPAM and YOLO-PAM models.

View Article and Find Full Text PDF

Alba domain-containing proteins are ubiquitously found in archaea and eukaryotes. By binding to either DNA, RNA, or DNA:RNA hybrids, these proteins function in genome stabilization, chromatin organization, gene regulation, and/or translational modulation. In the malaria parasite , six Alba domain proteins PfAlba1-6 have been described, of which PfAlba1 has emerged as a "master regulator" of translation during parasite intra-erythrocytic development (IED).

View Article and Find Full Text PDF

Sequestration of parasites in the placental vasculature causes increased morbidity and mortality in pregnant compared to non-pregnant patients in malaria- endemic regions. In this study, outbred pregnant CD1 mice with semi allogeneic fetuses were infected with transgenic or mock-inoculated by mosquito bite at either embryonic day (E) 6 (first trimester-equivalent) or 10 (second trimester- equivalent) and compared with non-pregnant females. -infected mosquitoes had greater biting avidity for E10 dams than uninfected mosquitoes, which was not apparent for E6 dams nor non-pregnant females.

View Article and Find Full Text PDF

Malaria and Dengue Co-infection: A Comprehensive Study in Peshawar, Pakistan.

Cureus

December 2024

Internal Medicine, Medical Teaching Institution (MTI) Hayatabad Medical Complex, Peshawar, PAK.

Background: Malaria and dengue are significant mosquito-borne diseases prevalent in tropical and subtropical climates, with increasing reports of co-infections. This study aimed to determine the frequency, patterns, and risk factors of these co-infections in Peshawar.

Methods: A cross-sectional study was conducted from June to December 2023 in three tertiary care hospitals in Peshawar.

View Article and Find Full Text PDF

Significance: Developments of anti-gametocyte drugs have been delayed due to insufficient understanding of gametocyte biology. We report a systematic workflow of data processing algorithms to quantify changes in the absorption spectrum and cell morphology of single malaria-infected erythrocytes. These changes may serve as biomarkers instrumental for the future development of antimalarial strategies, especially for anti-gametocyte drug design and testing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!