Modern society enables a shortening of sleep times, yet long-term consequences of extended wakefulness on the brain are largely unknown. Essential for optimal alertness, locus ceruleus neurons (LCns) are metabolically active neurons that fire at increased rates across sustained wakefulness. We hypothesized that wakefulness is a metabolic stressor to LCns and that, with extended wakefulness, adaptive mitochondrial metabolic responses fail and injury ensues. The nicotinamide adenine dinucleotide-dependent deacetylase sirtuin type 3 (SirT3) coordinates mitochondrial energy production and redox homeostasis. We find that brief wakefulness upregulates SirT3 and antioxidants in LCns, protecting metabolic homeostasis. Strikingly, mice lacking SirT3 lose the adaptive antioxidant response and incur oxidative injury in LCns across brief wakefulness. When wakefulness is extended for longer durations in wild-type mice, SirT3 protein declines in LCns, while oxidative stress and acetylation of mitochondrial proteins, including electron transport chain complex I proteins, increase. In parallel with metabolic dyshomeostasis, apoptosis is activated and LCns are lost. This work identifies mitochondrial stress in LCns upon wakefulness, highlights an essential role for SirT3 activation in maintaining metabolic homeostasis in LCns across wakefulness, and demonstrates that extended wakefulness results in reduced SirT3 activity and, ultimately, degeneration of LCns.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3960479 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.5025-12.2014 | DOI Listing |
Sensors (Basel)
December 2024
Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, GA 30322, USA.
Understanding sleep stages is crucial for diagnosing sleep disorders, developing treatments, and studying sleep's impact on overall health. With the growing availability of affordable brain monitoring devices, the volume of collected brain data has increased significantly. However, analyzing these data, particularly when using the gold standard multi-lead electroencephalogram (EEG), remains resource-intensive and time-consuming.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, 34700 Istanbul, Türkiye.
With increasing interest in plant-based compounds that can enhance sleep quality without the side effects of caffeine, Alpinia galanga (AG) has emerged as a promising herbal supplement for improving mental alertness. This study assessed the impact of water-soluble AG extract on sleep quality; the activity of GABAergic, glutamatergic, and serotonergic receptors; and concentrations of dopamine and serotonin in the brains of mice. The study employed two experimental models using BALB/c mice to examine the impact of pentobarbital-induced sleep and caffeine-induced insomnia.
View Article and Find Full Text PDFEur J Appl Physiol
January 2025
Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, USA.
The cortisol awakening response (CAR) is a discrete component of the circadian cortisol profile. Evidence suggests that the CAR is a deviation from the pre-awakening increase in cortisol concentration, although this has yet to be replicated. Therefore, the purpose of this study was to replicate this finding and to investigate further the extent to which the CAR is distinct from the circadian profile.
View Article and Find Full Text PDFeNeuro
January 2025
Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel. Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
Epilepsy, a neurological disorder characterized by recurrent unprovoked seizures, significantly impacts patient quality of life. Current classification methods focus primarily on clinical observations and electroencephalography (EEG) analysis, often overlooking the underlying dynamics driving seizures. This study uses surface EEG data to identify seizure transitions using a dynamical systems-based framework-the taxonomy of seizure dynamotypes-previously examined only in invasive data.
View Article and Find Full Text PDFSci Adv
January 2025
Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada.
Infradian mood and sleep-wake rhythms with periods of 48 hours and beyond have been observed in patients with bipolar disorder (BD), which even persist in the absence of exogenous timing cues, indicating an endogenous origin. Here, we show that mice exposed to methamphetamine in drinking water develop infradian locomotor rhythms with periods of 48 hours and beyond which extend to sleep length and manic state-associated behaviors in support of a model for cycling in BD. The cycling capacity is abrogated upon genetic disruption of dopamine (DA) production in DA neurons of the ventral tegmental area (VTA) or ablation of nucleus accumbens projecting DA neurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!