Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the present work, we report the mechanism of a very large increase in the two-photon (TP) activity of squaraine based molecules upon changing the substituents. The replacement of a specific fused ring by ethylene or ethyne moieties enhances the TP transition strength of these molecules up to the order of 10(13) au (∼10(10) GM), both in the gas phase as well as in dichloromethane solvent. Our calculations decisively establish that the reason for this large enhancement in the TP activity of the studied systems is the severe decrease in the corresponding detuning energies. We explain this fact using damped response theory calculations and provide a novel design strategy to control the detuning energy of such molecules. The results are benchmarked against the available experimental findings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3cp55485f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!