Temperature controlled shape change of grafted nanofoams.

Soft Matter

Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA.

Published: April 2014

We demonstrated that nanoscale-level actuation can be, in principle, achieved with grafted polymer nanofoams by forces associated with conformational changes of stretched macromolecular chains. The nanofoams are fabricated via a two-step procedure. First, the "grafting to" technique is used to obtain a 20-200 nm anchored and cross-linked poly(glycidyl methacrylate) film. Second, the film is swollen in solvent and freeze dried until the solvent is sublimated. The grafted nanofoam possesses the behavior of a shape-memory material, exhibiting gradual mechanical contraction at the nanometer scale as temperature is increased. Both the thickness and shape-recovery ratio of the nanofoam have a close to linear dependency on temperature. We also demonstrated that by modification of the poly(glycidyl methacrylate) nanofoam with grafting low molecular weight polymers, one can tune an absolute nanoscale mechanical response of the porous polymer film.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4sm00055bDOI Listing

Publication Analysis

Top Keywords

polyglycidyl methacrylate
8
temperature controlled
4
controlled shape
4
shape change
4
change grafted
4
grafted nanofoams
4
nanofoams demonstrated
4
demonstrated nanoscale-level
4
nanoscale-level actuation
4
actuation principle
4

Similar Publications

Hydrophobic modification and durability protection of cotton garment fabric surfaces by graphene oxide/PGMA composite coatings.

Sci Rep

December 2024

Dean's Office, Jiangxi Institute of Fashion Technology, No. 103, Lihuzhong Avenue, Xiangtang Economic Development Zone, Nanchang, 330201, People's Republic of China.

Cotton fiber fabric with practicability and functionality attracts much attention and plays an important role in many occasions. However, its surface contains many hydroxyl groups to show a hydrophilicity, leading to easy adhesion to stains to limit the application. In this work, polyglycidyl methacrylate (PGMA) was used as an oily and flexible matrix and graphene oxide (GO) particles were used as a filler.

View Article and Find Full Text PDF

Fabrication of a Heptapeptide-Modified Poly(glycidyl Methac-Rylate) Nanosphere for Oriented Antibody Immobilization and Immunoassay.

Molecules

September 2024

Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.

Oriented antibody immobilization has been widely employed in immunoassays and immunodiagnoses due to its efficacy in identifying target antigens. Herein, a heptapeptide ligand, HWRGWVC (HC7), was coupled to poly(glycidyl methacrylate) (PGMA) nanospheres (PGMA-HC7). The antibody immobilization behavior and antigen recognition performance were investigated and compared with those on PGMA nanospheres by nonspecific adsorption and covalent coupling via carbodiimide chemistry.

View Article and Find Full Text PDF

A new enantioselective open-tubular capillary electrochromatography (OT-CEC) was developed employing β-cyclodextrin covalent organic frameworks (β-CD COFs) conjugated gold-poly glycidyl methacrylate nanoparticles (Au-PGMA NPs) as a stationary phase. The resulting coating layer on the inner wall of the fabricated capillary column was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), energy dispersive spectroscopy (EDS), and electroosmotic flow (EOF) experiments. The performance of the fabricated capillary column was evaluated by CEC using enantiomers of seven model analytes, including two proton pump inhibitors (PPIs, omeprazole and tenatoprazole), three amino acids (AAs, tyrosine, phenylalanine, and tryptophan), and two fluoroquinolones (FQs, gatifloxacin and sparfloxacin).

View Article and Find Full Text PDF

Glycosylation and phosphorylation rank as paramount post-translational modifications, and their analysis heavily relies on enrichment techniques. In this work, a facile approach was developed for the one-step simultaneous enrichment and stepwise elution of glycoproteins and phosphoproteins. The core of this approach was the application of the novel titanium (IV) ion immobilized poly(glycidyl methacrylate) microparticles functionalized with dendrimer polyethylenimine and phytic acid.

View Article and Find Full Text PDF

As increasing fiber hydrophobicity can significantly improve the paper dewatering process, we found that replacing SBKP and HBKP with 0.5% superhydrophobic CPGMA can significantly improve the dewatering of paper sheets. Therefore, it can be concluded that if CPGMA has little effect on paper properties, it will have potential industrial value in the papermaking industry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!