Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Metabolic syndrome (MetS) remains a controversial entity. Specific clusters of MetS components - rather than MetS per se - are associated with accelerated arterial ageing and with cardiovascular (CV) events. To investigate whether the distribution of clusters of MetS components differed cross-culturally, we studied 34,821 subjects from 12 cohorts from 10 European countries and one cohort from the USA in the MARE (Metabolic syndrome and Arteries REsearch) Consortium.
Methods: In accordance with the ATP III criteria, MetS was defined as an alteration three or more of the following five components: elevated glucose (G), fasting glucose ≥110 mg/dl; low HDL cholesterol, < 40mg/dl for men or <50 mg/dl for women; high triglycerides (T), ≥150 mg/dl; elevated blood pressure (B), ≥130/≥85 mmHg; abdominal obesity (W), waist circumference >102 cm for men or >88 cm for women.
Results: MetS had a 24.3% prevalence (8468 subjects: 23.9% in men vs. 24.6% in women, p < 0.001) with an age-associated increase in its prevalence in all the cohorts. The age-adjusted prevalence of the clusters of MetS components previously associated with greater arterial and CV burden differed across countries (p < 0.0001) and in men and women (p < 0.0001). In details, the cluster TBW was observed in 12% of the subjects with MetS, but was far more common in the cohorts from the UK (32.3%), Sardinia in Italy (19.6%), and Germany (18.5%) and less prevalent in the cohorts from Sweden (1.2%), Spain (2.6%), and the USA (2.5%). The cluster GBW accounted for 12.7% of subjects with MetS with higher occurrence in Southern Europe (Italy, Spain, and Portugal: 31.4, 18.4, and 17.1% respectively) and in Belgium (20.4%), than in Northern Europe (Germany, Sweden, and Lithuania: 7.6, 9.4, and 9.6% respectively).
Conclusions: The analysis of the distribution of MetS suggested that what follows under the common definition of MetS is not a unique entity rather a constellation of cluster of MetS components, likely selectively risky for CV disease, whose occurrence differs across countries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4544872 | PMC |
http://dx.doi.org/10.1177/2047487314525529 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!