Objectives: Adenomatous polyps are precursors of colorectal cancer; their detection and removal is the goal of colon cancer screening programs. However, fecal-based methods identify patients with adenomatous polyps with low levels of sensitivity. The aim or this study was to develop a highly accurate, prototypic, proof-of-concept, spot urine-based diagnostic test using metabolomic technology to distinguish persons with adenomatous polyps from those without polyps.
Methods: Prospective urine and stool samples were collected from 876 participants undergoing colonoscopy examination in a colon cancer screening program, from April 2008 to October 2009 at the University of Alberta. Colonoscopy reference standard identified 633 participants with no colonic polyps and 243 with colonic adenomatous polyps. One-dimensional nuclear magnetic resonance spectra of urine metabolites were analyzed to define a diagnostic metabolomic profile for colonic adenomas. A urine metabolomic diagnostic test for colonic adenomatous polyps was established using 67% of the samples (un-blinded training set) and validated using the other 33% of the samples (blinded testing set). The urine metabolomic diagnostic test's specificity and sensitivity were compared with those of fecal-based tests.
Results: Using a two-component, orthogonal, partial least-squares model of the metabolomic profile, the un-blinded training set identified patients with colonic adenomatous polyps with 88.9% sensitivity and 50.2% specificity. Validation using the blinded testing set confirmed sensitivity and specificity values of 82.7% and 51.2%, respectively. Sensitivities of fecal-based tests to identify colonic adenomas ranged from 2.5 to 11.9%.
Conclusions: We describe a proof-of-concept spot urine-based metabolomic diagnostic test that identifies patients with colonic adenomatous polyps with a greater level of sensitivity (83%) than fecal-based tests.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3940838 | PMC |
http://dx.doi.org/10.1038/ctg.2014.2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!