Background: The transcriptome complexity in an organism can be achieved by alternative splicing of precursor messenger RNAs. It has been revealed that alternations in mRNA splicing play an important role in a number of diseases including human cancers.
Methods: In this study, we exploited whole transcriptome sequencing data from five lung adenocarcinoma tissues and their matched normal tissues to interrogate intron retention, a less studied alternative splicing form which has profound structural and functional consequence by modifying open reading frame or inserting premature stop codons.
Results: Abundant intron retention events were found in both tumor and normal tissues, and 2,340 and 1,422 genes only contain tumor-specific retentions and normal-specific retentions, respectively. Combined with gene expression analysis, we showed that genes with tumor-specific retentions tend to be over-expressed in tumors, and the abundance of intron retention within genes is negatively related with gene expression, indicating the action of nonsense mediated decay. Further functional analysis demonstrated that genes with tumor-specific retentions include known lung cancer driver genes and are found enriched in pathways important in carcinogenesis.
Conclusions: We hypothesize that intron retentions and consequent nonsense mediated decay may collectively counteract the over-expression of genes promoting cancer development. Identification of genes with tumor-specific retentions may also help develop targeted therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3999986 | PMC |
http://dx.doi.org/10.1186/1755-8794-7-15 | DOI Listing |
Characterization of tumor epigenetic aberrations is integral to understanding the mechanisms of tumorigenesis and provide diagnostic, prognostic, and predictive information of high clinical relevance. Among the different tumor-associated epigenetic signatures, 5 methyl-cytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are the two most well-characterized DNA methylation alterations linked to cancer pathogenesis. 5hmC has a tissue-specific distribution and its abundance is subjected to changes in tumor DNA, making it a promising biomarker.
View Article and Find Full Text PDFBiochim Biophys Acta Rev Cancer
January 2025
Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China. Electronic address:
Among various therapeutic agents, Oncolytic Viruses (OVs) are the most promising anticancer therapeutics because of their tumor-specific targeting and capability to mediate an antitumor immune response. In this review, we will discuss how epigenetic reprogramming of both the host and tumor can facilitate increased sensitivity of tumors to OV therapy. OVs infect tumor cells and modulate epigenetic landscapes, including DNA methylation, histone modifications, and chromatin remodeling, as well as non-coding RNA expression that consequently induces immune responses.
View Article and Find Full Text PDFJ Mol Diagn
January 2025
Labcorp, Burlington, North Carolina.
To help guide treatment decisions and clinical trial matching, tumor genomic profiling is an essential precision oncology tool. Liquid biopsy, a complementary approach to tissue testing, can assess tumor-specific DNA alterations circulating in the blood. Labcorp Plasma Complete is a next-generation sequencing, cell-free DNA comprehensive genomic profiling test that identifies clinically relevant somatic variants across 521 genes in advanced and metastatic solid cancers.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Department of Biochemistry and Molecular Genetics and.
Mutations or homozygous deletions of MHC class II (MHC-II) genes are commonly found in B cell lymphomas that develop in immune-privileged sites and have been associated with patient survival. However, the mechanisms regulating MHC-II expression, particularly through genetic and epigenetic factors, are not yet fully understood. In this study, we identified a key signaling pathway involving the histone H2AK119 deubiquitinase BRCA1 associated protein 1 (BAP1), the interferon regulatory factor interferon regulatory factor 1 (IRF1), and the MHC-II transactivator class II transactivator (CIITA), which directly activates MHC-II gene expression.
View Article and Find Full Text PDFNat Commun
January 2025
Neogene Therapeutics, A member of the AstraZeneca Group, Amsterdam, The Netherlands.
Adoptive cell therapy with tumor-infiltrating lymphocytes (TIL) can mediate tumor regression, including complete and durable responses, in a range of solid cancers, most notably in melanoma. However, its wider application and efficacy has been restricted by the limited accessibility, proliferative capacity and effector function of tumor-specific TIL. Here, we develop a platform for the efficient identification of tumor-specific TCR genes from diagnostic tumor biopsies, including core-needle biopsies frozen in a non-viable format, to enable engineered T cell therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!