Self-fertilization, which results in reduced fitness of offspring, is a common problem in hermaphrodite angiosperms. To prevent this, many plants utilize SI (self-incompatibility), which is determined by the multi-allelic S-locus, that allows discrimination between self (incompatible) and non-self (compatible) pollen by the pistil. In poppy (Papaver rhoeas), the pistil S-determinant (PrsS) is a small secreted protein which interacts with the pollen S-determinant PrpS, a ~20 kDa novel transmembrane protein. Interaction of matching pollen and pistil S-determinants results in self-recognition, initiating a Ca²⁺-dependent signalling network in incompatible pollen. This triggers several downstream events, including alterations to the cytoskeleton, phosphorylation of sPPases (soluble inorganic pyrophosphatases) and an MAPK (mitogen-activated protein kinase), increases in ROS (reactive oxygen species) and nitric oxide (NO), and activation of several caspase-like activities. This results in the inhibition of pollen tube growth, prevention of self-fertilization and ultimately PCD (programmed cell death) in incompatible pollen. The present review focuses on our current understanding of the integration of these signals with their targets in the SI/PCD network. We also discuss our recent functional expression of PrpS in Arabidopsis thaliana pollen.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BST20130248DOI Listing

Publication Analysis

Top Keywords

signalling network
8
pollen pistil
8
incompatible pollen
8
pollen
7
self-incompatibility papaver
4
papaver advances
4
advances integrating
4
integrating signalling
4
network self-fertilization
4
self-fertilization reduced
4

Similar Publications

Gymnostachyum febrifugum, a less-known ethnomedicinal plant from the Western Ghats of India, is used to treat various diseases and serves as an antioxidant and antibacterial herb. The present study aims to profile the cytotoxic phytochemicals in G. febrifugum roots using GC-MS/MS, in vitro confirmation of cytotoxic potential against breast cancer and an in silico study to understand the mechanism of action.

View Article and Find Full Text PDF

Limited treatment options are available for bladder cancer (BCa) resulting in extremely high mortality rates. Cyclovirobuxine D (CVB-D), a naturally alkaloid, reportedly exhibits notable antitumor activity against diverse tumor types. However, its impact on CVB-D on BCa and its precise molecular targets remain unexplored.

View Article and Find Full Text PDF

E3 ligase substrate adaptor SPOP fine-tunes the UPR of pancreatic β cells.

Genes Dev

December 2024

Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA;

The Cullin-3 E3 ligase adaptor protein SPOP targets proteins for ubiquitination and proteasomal degradation. We previously established the β-cell transcription factor (TF) and human diabetes gene PDX1 as an SPOP substrate, suggesting a functional role for SPOP in the β cell. Here, we generated a β-cell-specific deletion mouse strain ( ) and found that is necessary to prevent aberrant basal insulin secretion and for maintaining glucose-stimulated insulin secretion through impacts on glycolysis and glucose-stimulated calcium flux.

View Article and Find Full Text PDF

Background: Fulminant type 1 diabetes mellitus (FT1DM) is a severe subtype of type 1 diabetes characterized by rapid onset, metabolic disturbances, and irreversible insulin secretion failure. Recent studies have suggested associations between FT1DM and certain medications, warranting further investigation.

Objectives: This study aims to analyze drugs associated with an increased risk of FT1DM using the Food and Drug Administration Adverse Event Reporting System (FAERS) database.

View Article and Find Full Text PDF

Presently, the in vitro recording of intracellular neuronal signals on microelectrode arrays (MEAs) requires complex 3D nanostructures or invasive and approaches such as electroporation. Here, it is shown that laser poration enables intracellular coupling on planar electrodes without damaging neurons or altering their spontaneous electrophysiological activity, allowing the process to be repeated multiple times on the same cells. This capability distinguishes laser-based neuron poration from more invasive methods like electroporation, which typically serve as endpoint measurement for cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!