Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Eukaryotic CBDs (cAMP-binding domains) control multiple cellular functions (e.g. phosphorylation, guanine exchange and ion channel gating). Hence the manipulation of cAMP-dependent signalling pathways has a high translational potential. However, the ubiquity of eukaryotic CBDs also poses a challenge in terms of selectivity. Before the full translational potential of cAMP signalling can be tapped, it is critical to understand the structural basis for selective cAMP agonism and antagonism. Recent NMR investigations have shown that structurally homologous CBDs respond differently to several CBD ligands and that these unexpected differences arise at the level of either binding (i.e. affinity) or allostery (i.e. modulation of the autoinhibitory equilibria). In the present article, we specifically address how the highly conserved CBD fold binds cAMP with markedly different affinities in PKA (protein kinase A) relative to other eukaryotic cAMP receptors, such as Epac (exchange protein directly activated by cAMP) and HCN (hyperpolarization-activated cyclic-nucleotide-modulated channel). A major emerging determinant of cAMP affinity is hypothesized to be the position of the autoinhibitory equilibrium of the apo-CBD, which appears to vary significantly across different CBDs. These analyses may assist the development of selective CBD effectors that serve as potential drug leads for the treatment of cardiovascular diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BST20130282 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!