Arrays of densely packed isolated nanowires by focused beam induced deposition plus Ar⁺ milling.

ACS Nano

Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC , 50009 Zaragoza, Spain.

Published: April 2014

One of the main features of any lithography technique is its resolution, generally maximized for a single isolated object. However, in most cases, functional devices call for highly dense arrays of nanostructures, the fabrication of which is generally challenging. Here, we show the growth of arrays of densely packed isolated nanowires based on the use of focused beam induced deposition plus Ar(+) milling. The growth strategy presented herein allows the creation of films showing thickness modulation with periodicity determined by the beam scan pitch. The subsequent Ar(+) milling translates such modulation into an array of isolated nanowires. This approach has been applied to grow arrays of W-based nanowires by focused ion beam induced deposition and Co nanowires by focused electron beam induced deposition, achieving linear densities up to 2.5 × 10(7) nanowires/cm (one nanowire every 40 nm). These results open the route for specific applications in nanomagnetism, nanosuperconductivity, and nanophotonics, where arrays of densely packed isolated nanowires grown by focused beam deposition are required.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn500525kDOI Listing

Publication Analysis

Top Keywords

isolated nanowires
16
beam induced
16
induced deposition
16
arrays densely
12
densely packed
12
packed isolated
12
nanowires focused
12
focused beam
12
ar+ milling
8
nanowires
6

Similar Publications

An FPGA-Based SiNW-FET Biosensing System for Real-Time Viral Detection: Hardware Amplification and 1D CNN for Adaptive Noise Reduction.

Sensors (Basel)

January 2025

Department of Computer Science, Faculty of Sciences and Humanities Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia.

Impedance-based biosensing has emerged as a critical technology for high-sensitivity biomolecular detection, yet traditional approaches often rely on bulky, costly impedance analyzers, limiting their portability and usability in point-of-care applications. Addressing these limitations, this paper proposes an advanced biosensing system integrating a Silicon Nanowire Field-Effect Transistor (SiNW-FET) biosensor with a high-gain amplification circuit and a 1D Convolutional Neural Network (CNN) implemented on FPGA hardware. This attempt combines SiNW-FET biosensing technology with FPGA-implemented deep learning noise reduction, creating a compact system capable of real-time viral detection with minimal computational latency.

View Article and Find Full Text PDF

In recent years, the use of bacterial flagella as biomimetic templates has gained increasing attention in nanomaterial synthesis due to their unique structural and functional properties. In this study, we optimized the flagella extraction method and achieved a high concentration of flagella solution. Flagella were isolated from .

View Article and Find Full Text PDF

1D CoMoC-Based Heterojunctional Nanowires from Pyrolytically "Squeezing" PMo/ZIF-67 Cubes for Efficient Overall Water Electrolysis.

Small

January 2025

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Xuefu Road, Harbin, 150080, P. R. China.

The bi-transition-metal interstitial compounds (BTMICs) are promising for water electrolysis. The previous BTMICs are usually composed of irregular particles. Here, this work shows the synthesis of novel 1D CoMoC-based heterojunction nanowires (1D Co/CoMoC) with diameters about 50 nm and a length-to-diameter ratio about 20 for efficient water electrolysis.

View Article and Find Full Text PDF

Cardiovascular diseases remain the leading cause of mortality, necessitating advancements in cardiac tissue engineering platforms for improved disease modeling, drug screening, and regenerative therapies. The chief challenge to recapitulating the beating behavior of cardiomyocytes is creation of the circular stress profile experienced by hollow organs in the natural heart due to filling pressure and integrated strategies for intercellular communication to promote cell-to-cell connections. We present a platform featuring addressable arrays of nanogrooved polydimethylsiloxane (PDMS) diaphragms for cell alignment and circular mechanical stimulation, with embedded silver nanowires (AgNWs) for electrical cues, so that cardiomyocyte functionality can be assessed under these synergistic influences.

View Article and Find Full Text PDF

Enhanced Electrical Performance of InAs Nanowire Field-Effect Transistors Based on the YO Isolation Layer.

ACS Appl Mater Interfaces

December 2024

Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China.

Nanowire (NW) field-effect transistors (FETs) have great potential in next-generation integrated circuits. InAs NWs are suitable for N-type transistors because of their excellent electrical properties. However, unlike the Si/SiO system, the loose and defective native oxide of InAs is unable to passivate the channel surface and serve as an efficient isolation layer (IL) in the gate stack.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!