Vascularization is an important factor that affects diabetic wound healing. There is increasing evidence that myeloid cell lineages play a role in neovascularization. In this study, the efficiency of Gr-1+CD11b+ myeloid cells to home to the site of injury and enhance diabetic wound healing by neoangiogenesis after intravenous administration was investigated. Gr-1+CD11b+ myeloid cells were injected into tail vein after establishment of dorsal window chamber, hindlimb ischaemia and ear-punch injury in diabetic or non-diabetic mice. The Gr-1+CD11b+ myeloid cells efficiently homed to the site of injury after intravenous administration and increased neoangiogenesis. The chemokine receptor type 4 (CXCR4) is robustly expressed by Gr-1+CD11b+ myeloid cells. Inhibition of CXCR4 decreases the homing ability of Gr-1+CD11b+ myeloid cells to the site of injury, which indicates that the CXCR4/SDF-1 axis plays an important role in the homing of Gr-1+CD11b+ myeloid cells to the site of injury. In addition, Gr-1+CD11b+ myeloid cells were found to improve blood flow recovery of ischaemic limb and enhance wound healing in diabetic mice by neoangiogenesis after intravenous administration. Taken together, the results of this study suggest that Gr-1+CD11b+ myeloid cells may serve as a potential cell therapy for diabetic wound healing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4112018 | PMC |
http://dx.doi.org/10.1111/jcmm.12265 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
The heterogeneous form of malignancy in the myeloid lineage of normal hematopoietic stem cells (HSCs) is characterized as acute myeloid leukemia (AML). The t(9;11) reciprocal translocation (p22;q23) generates MLL-AF9 oncogene, which results in myeloid-based monoblastic AML with frequent relapse and poor survival. MLL-AF9 binds with the C-Myb promoter and regulates AML onset, maintenance, and survival.
View Article and Find Full Text PDFPharmacol Res
December 2024
Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, China. Electronic address:
Front Immunol
November 2024
Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
To date, there is no licensed vaccine against the protozoan parasite (, the etiological agent of Chagas Disease. has evolved numerous mechanisms to evade and manipulate the host immune system. Among the subversive strategies employed by the parasite, marked increases in CD11b+ Gr-1+ myeloid-derived suppressor cells (MDSCs) in several organs have been described.
View Article and Find Full Text PDFFront Cell Infect Microbiol
November 2024
División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina.
Introduction: (Ye) is a Gram-negative bacterium that causes gastrointestinal infections. The myeloid-derived suppressor cells (MDSCs) constitute a cellular population with the capacity of inducing the specific suppression of T cells. Although there is evidence supporting the role of MDSCs in controlling the immune responses in several bacterial infections, its role during Ye infection has not yet been reported.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria.
Lysosomal acid lipase (LAL) is the only known enzyme that degrades cholesteryl esters and triglycerides at an acidic pH. In LAL deficiency (LAL-D), dysregulated expression of matrix metalloproteinase 12 (MMP-12) has been described. The overexpression of MMP-12 in myeloid lineage cells causes an immune cell dysfunction resembling that of knockout ( KO) mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!