AlgaeSim, a dynamic multiple-systems (C, N, P) mass balance model, was developed to explore the potential for algae biomass production from wastewater by coupling two photobioreactors into the main treatment train at a municipal wastewater resource recovery facility (WRRF) in Tampa, Florida. The scoping model examined the synergy between algae cultivation and wastewater treatment through algal growth and substrate removal kinetics, as well as through macroeconomic analyses of biomass conversion to bioproducts. Sensitivity analyses showed that biomass production is strongly dependent on Monod variables and harvesting regime, with sensitivity changing with growth phase. Profitability was sensitive to processing costs and market prices of products. Under scenarios based on current market conditions and typical algae production, AlgaeSim shows that a WRRF can potentially generate significant profit if algae are processed for biodiesel, biogas, or fertilizer. Wastewater resource recovery facilities could similarly save on operating costs resulting from the reduction in aeration (for nitrification) and chemicals (for denitrification).

Download full-text PDF

Source
http://dx.doi.org/10.2175/106143013x13807328849215DOI Listing

Publication Analysis

Top Keywords

production wastewater
8
wastewater treatment
8
biomass production
8
wastewater resource
8
resource recovery
8
analyses biomass
8
wastewater
5
algaesim model
4
model integrated
4
integrated algal
4

Similar Publications

Biodegradation of azo dyes by Aspergillus flavus and its bioremediation potential using seed germination efficiency.

BMC Microbiol

January 2025

Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.

The worldwide textile industry extensively uses azo dyes, which pose serious health and environmental risks. Effective cleanup is necessary but challenging. Developing bioremediation methods for textile effluents will improve color removal efficiency.

View Article and Find Full Text PDF

New insights in the low-temperature-dependent formation of amorphous titania-coated magnetic polydopamine nanocomposites for the adsorption of methylene blue.

Sci Rep

January 2025

Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guian, 550025, China.

Removal of accumulated dyes from the environment water bodies is essential to prevent further harm to humans. The development and design of new alternative nanoadsorbents that can conveniently, quickly, and efficiently improve the adsorption and removal efficiency of dyes from wastewater remains a huge challenge. An amorphous TiO with a magnetic core-shell-shell structure (FeO@PDA@a-TiO, denoted as FPaT) was constructed through a series of steps.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) is a major cause of death worldwide, with 1.27 M direct deaths from bacterial drug-resistant infections as of 2019. Dissemination of multidrug-resistant (MDR) bacteria in the environment, in conjunction with pharmapollution by active pharmaceutical ingredients (APIs), create and foster an environmental reservoir of AMR.

View Article and Find Full Text PDF

Facile Preparation of Sulfonated Polysulfone Composite Membranes with High Hydrophilicity and Visible-Light Driving Self-Cleaning Performance.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China.

The photo-Fenton reaction can efficiently degrade organic pollutants and thus is applied intensively for clearing out membrane fouling. However, the pollutant removal efficiency is greatly limited by the redox cycle rate of Fe/Fe and the rapid recombination rate of the photogenerated electrons and holes. In order to overcome these drawbacks, a sulfonated polysulfone composite membrane was designed and prepared by incorporating titanium dioxide (TiO) nanoparticles into a sulfonated polysulfone membrane and sequentially forming β-FeOOHs on the membrane surface.

View Article and Find Full Text PDF

How peptide migration and fraction bioactivity are modulated by applied electrical current conditions during electromembrane process separation: A comprehensive machine learning-based peptidomic approach.

Food Res Int

January 2025

Department of Food Science, Université Laval, Québec G1V 0A6, Canada; Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM, Laboratory of Food Processing and ElectroMembrane Processes), Université Laval, Québec G1V 0A6, Canada; Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec G1V 0A6, Canada. Electronic address:

Industrial wastewaters are significant global concerns due to their environmental impact. Yet, protein-rich wastewaters can be valorized by enzymatic hydrolysis to release bioactive peptides. However, achieving selective molecular differentiation and eventually enhancing peptide bioactivities require costly cascades of membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!