The amide of galacturonic acid with lysine as an immunodominant component of the lipopolysaccharide core region from Proteus penneri 42 strain.

Acta Biochim Pol

Department of Immunobiology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, University of Łódź, Łódź, Poland.

Published: November 2014

Most Proteus lipopolysaccharides (LPSs) contain uronic acids or their amides with different amino acids, which together with other negatively charged components account for the acidic character of such LPS molecules. Previous studies have shown the significance of an amide of galacturonic acid with lysine [D-GalA(L-Lys)] for serological specificity of O-antigens from few P. mirabilis strains. In this work, the immunodominant role of GalALys was indicated for the P. penneri 42 LPS core region. The studies also showed the serological identity of core oligosaccharides from P. penneri 42 (O71), P. mirabilis 51/57 (O28) and R14/S1959 strains.

Download full-text PDF

Source

Publication Analysis

Top Keywords

amide galacturonic
8
galacturonic acid
8
acid lysine
8
core region
8
lysine immunodominant
4
immunodominant component
4
component lipopolysaccharide
4
lipopolysaccharide core
4
region proteus
4
proteus penneri
4

Similar Publications

Isolation and characterization of a hepatoprotective polysaccharide from Lonicera caerulea L. var. edulis Turcz. ex Herd. fruit against APAP-induced acute liver injury mice.

Int J Biol Macromol

August 2024

Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China. Electronic address:

The structure and bioactivities of a novel polysaccharide from Lonicera caerulea L. var. edulis Turcz.

View Article and Find Full Text PDF

Galacturonic acid-capsaicin prodrug for prolonged nociceptive-selective nerve blockade.

J Control Release

July 2024

Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL 35487, USA; Center for Convergent Biosciences and Medicine, University of Alabama, Tuscaloosa, AL 35487, USA; Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL 35487, USA. Electronic address:

There is an urgent clinical need to develop nerve-blocking agents capable of inducing long duration sensory block without muscle weakness or paralysis to treat post-operative and chronic pain conditions. Here, we report a galacturonic acid-capsaicin (GalA-CAP) prodrug as an effective nociceptive-selective axon blocking agent. Capsaicin selectively acts on nociceptive signaling without motor nerve blockade or disruption of proprioception and touch sensation, and the galacturonic acid moiety enhance prodrug permeability across the restrictive peripheral nerve barriers (PNBs) via carrier-mediated transport by the facilitative glucose transporters (GLUTs).

View Article and Find Full Text PDF

Introduction: Bio stimulants are substances and/or microorganisms that are used to improve plant growth and crop yields by modulating physiological processes and metabolism of plants. While research has primarily focused on the broad effects of bio stimulants in crops, understanding their cellular and molecular influences in plants, using metabolomic analysis, could elucidate their effectiveness and offer possibilities for fine-tuning their application. One such bio stimulant containing galacturonic acid as elicitor is used in agriculture to improve wheat vigor and strengthen resistance to lodging.

View Article and Find Full Text PDF

Role of galacturonic acid in acrylamide formation: Insights from structural analysis.

Food Chem

September 2024

College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China. Electronic address:

Acrylamide (AA) is a neoformed compound in heated foods, mainly produced between asparagine (Asn) and glucose (Glc) during the Maillard reaction. Galacturonic acid (GalA), the major component of pectin, exhibits high activity in AA formation. This study investigated the pathway for AA formation between GalA and Asn.

View Article and Find Full Text PDF

Stabilization of a peptide conformation via stapling strategy may be realized by the reversible or more often irreversible connection of side chains being in mutually appropriate geometry. An incorporation of phenylboronic acid and sugar residues (fructonic or galacturonic acid), attached to two lysine side chains via amide bonds and separated by 2, 3, or 6 other residues in the C-terminal fragment of RNase A introduces the intramolecular interaction stabilizing the α-helical organization. The boronate ester stapling is stabilized in mild basic conditions and may be switched off by acidification leading to unfolded organization of the peptide chain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!