Background And Purpose: Recently, evidence that Zinc transporter ZRT/IRT-like protein 4 (ZIP4) is involved in invasiveness and apoptosis has emerged in pancreatic cancer and prostate cancer. Our aim was to assess the role of ZIP4 in invasiveness, migration and apoptosis of hepatocellular carcinoma (HCC). The prognostic value of ZIP4 in HCC after liver transplantation was evaluated.

Methods: The role of ZIP4 in HCC was investigated by overexpressing ZIP4 in BEL7402 and HepG2 cells and inhibiting ZIP4 in HuH-7 and HepG2 cells, using overexpression and shRNA plasmids in vitro studies. Immunohistochemical analysis was used to evaluate ZIP4 expression in HCC tissues from 60 patients undergoing liver transplantation, 36 cirrhotic tissue samples, and 6 normal tissue samples. Prognostic significance was assessed using the Kaplan-Meier method and the log-rank test.

Results: Specific suppression of ZIP4 reduced cell migration and invasiveness, whereas ZIP4 overexpression caused increases in cell migration and invasiveness. Furthermore, overexpression of ZIP4 resulted in increased expression of pro-metastatic genes (MMP-2, MMP-9) and decreased expression of pro-apoptotic genes (caspase-3, caspase-9, Bax). In contrast, suppression of ZIP4 resulted in an opposite effect. ZIP4 was more highly expressed in tumor tissues than non-tumor tissues (P < 0.0001). ZIP4 expression was significantly associated with tumor recurrence (P = 0.002), tumor node metastasis stage (P = 0.044), Child-Turcotte-Pugh score (P = 0.042), and tumor size (P = 0.022). Univariate analysis showed that ZIP4 expression was significantly associated with overall survival (P = 0.020) and tumor-free survival (P = 0.049). Multivariate analysis revealed that ZIP4 was an independent predictor of overall survival (P = 0.037) after liver transplantation.

Conclusions: ZIP4 could promote migration, invasiveness, and suppress apoptosis in hepatocellular carcinoma, and represent a novel predictor of poor prognosis and therapeutic target for patients with HCC who undergo liver transplantation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3957080PMC
http://dx.doi.org/10.7150/ijbs.7401DOI Listing

Publication Analysis

Top Keywords

zip4
17
liver transplantation
16
hepatocellular carcinoma
12
zip4 expression
12
migration invasiveness
12
tumor recurrence
8
role zip4
8
apoptosis hepatocellular
8
zip4 hcc
8
hepg2 cells
8

Similar Publications

Biofortification of staple food crops with zinc (Zn) is considered a sustainable strategy to prevent deficiency, but evidence on their health impact is awaited. The weaning Wistar/Kyoto male rats were fed on a Zn-deficient diet (ZDD, < 0.1 ppm) for 4 weeks followed by repletion (pair feeding) with control rice diet without (CRD; 5.

View Article and Find Full Text PDF

Transcriptional responses of three slc39a/zip members (zip4, zip5 and zip9) and their roles in Zn metabolism in grass carp (Ctenopharyngodon idella).

Biochim Biophys Acta Gene Regul Mech

December 2024

Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Centre, Qingdao 266237, China. Electronic address:

In order to explore the regulatory mechanism of zip4, zip5 and zip9 in zinc metabolism of grass carp (Ctenopharyngodon idella), the effects of zinc (Zn) on the mRNA expression of zip4, zip5 and zip9 were investigated. Compared to the control, the mRNA levels of zip4 and zip9 were significantly reduced under low and high zinc in L8824 cells; the mRNA expression level of zip5 was significantly increased under low and high zinc incubation. Then, their promoter sequences were cloned, which were 2361 bp, 2004 bp and 2186 bp sequences for zip4, zip5 and zip9 promoters, respectively.

View Article and Find Full Text PDF

ZIP4, a pivotal member of the ZIP family, is the causative gene for the hereditary disorder AE (acrodermatitis enteropathica) in humans, and plays an essential role in regulating zinc ion balance within cells. While research on the molecular structure of ZIP4 continues, there remains a lack of full understanding regarding the stereo-structural conformation of ZIP4 molecules. Currently, there are two hypotheses concerning the transport of zinc ions into the cytoplasm by ZIP4, with some contradictions between experimental studies.

View Article and Find Full Text PDF

Background: Preclinical and clinical studies suggest that zinc deficiency and chronic stress contribute to depressive symptoms. Our study explores the intricate relationship between these factors by examining their physiological and biochemical effects across various organs in C57Bl/6J mice.

Methods: The mice were divided into four groups: control, chronic restraint stress for 3 weeks, a zinc-restricted diet (<3 mg/kg) for 4 weeks, and a combination of stress and zinc restriction.

View Article and Find Full Text PDF

Cd-Resistant Plant Growth-Promoting Rhizobacteria R27 Absorbed Cd and Reduced Cd Accumulation in Lettuce ( L.).

Microorganisms

November 2024

Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Chinese Academy of Sciences, Lanzhou 730000, China.

The use of plant growth-promoting rhizobacteria (PGPR) for the bioremediation of heavy metal cadmium (Cd) and for enhancing plant growth in Cd-polluted soil is widely recognized as an effective approach. This study aimed to isolate Cd-resistant bacteria with plant growth-promoting (PGP) traits from the rhizosphere of vegetables subjected to metal contamination and to investigate the mechanisms associated with Cd adsorption as well as its impact on Cd uptake in lettuce. Six Cd-resistant bacterial strains were isolated from rhizosphere soil, among which the R27 strain exhibited the highest tolerance to Cd (minimum inhibitory concentration of 2000 mg/L) along with PGP traits, including phosphate solubilization (385.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!