Resveratrol (3,4',5-trihydroxystilbene) is a plant-derived polyphenolic trans-stilbenoid, which exerts multifaceted antiaging effects. Here, we propose a novel delivery system for resveratrol, which significantly increases its cellular uptake into aged cells. Combination of resveratrol with a positively charged lipid component to "conventional" liposomes converts these lipid vesicles to a robust fusogenic system. To study their cellular uptake and cellular effects, we treated primary cerebromicrovascular endothelial cells isolated from aged F344xBN rats with resveratrol encapsulated in fusogenic liposomes (FL-RSV). To demonstrate effective cellular uptake of FL-RSV, accumulation of the lipophilic tracer dye, DiR, and resveratrol in cerebromicrovascular endothelial cells was confirmed using flow cytometry and confocal microscopy and high-performance liquid chromatography electrochemical detection. Treatment of aged cerebromicrovascular endothelial cells with FL-RSV activated Nrf2 (assessed with a reporter gene assay), significantly decreased cellular production of reactive oxygen species (assessed by a flow cytometry-based H2DCFDA fluorescence method), and inhibited apoptosis. Taken together, encapsulation of resveratrol into novel fusogenic liposomes significantly enhances the delivery of resveratrol into aged cells, which subsequently results in rapid activation of cellular Nrf2-driven antioxidant defense mechanisms. Our studies provide proof-of-concept for the development of a novel, translationally relevant interventional strategy for prevention and/or control of oxidative stress-related pathophysiological conditions in aging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351387PMC
http://dx.doi.org/10.1093/gerona/glu029DOI Listing

Publication Analysis

Top Keywords

cerebromicrovascular endothelial
16
endothelial cells
16
fusogenic liposomes
12
cellular uptake
12
resveratrol
8
resveratrol encapsulated
8
novel fusogenic
8
rats resveratrol
8
aged cells
8
cells
6

Similar Publications

Age-related cerebromicrovascular endothelial dysfunction underlies the initiation and progression of cognitive dysfunction and dementia, thus increasing the susceptibility of older adults to such conditions. Normal brain function requires dynamic adjustment of cerebral blood flow to meet the energetic demands of active neurons, which is achieved the homeostatic mechanism neurovascular coupling (NVC). In this context, therapeutical strategies aimed at rescuing or preserving NVC responses can delay the incidence or mitigate the severity of age-related cognitive dysfunction, and time-restricted eating (TRE) is a potential candidate for such a strategy.

View Article and Find Full Text PDF

The gut microbiota-brain axis has been associated with the pathogenesis of numerous disorders, but the mechanism(s) underlying these links are generally poorly understood. Accumulating evidence indicates the involvement of gut microbe-derived metabolites. Circulating levels of the gut microbe/host co-metabolite -cresol sulfate (pCS) correlate with cerebrovascular event risk in individuals with chronic kidney disease (CKD), but whether this relationship is mechanistic is unclear.

View Article and Find Full Text PDF

Aging plays a pivotal role in the pathogenesis of cerebral small vessel disease (CSVD), contributing to the onset and progression of vascular cognitive impairment and dementia (VCID). In older adults, CSVD often leads to significant pathological outcomes, including blood-brain barrier (BBB) disruption, which in turn triggers neuroinflammation and white matter damage. This damage is frequently observed as white matter hyperintensities (WMHs) in neuroimaging studies.

View Article and Find Full Text PDF

Age-related cerebromicrovascular changes, including blood-brain barrier (BBB) disruption and microvascular rarefaction, play a significant role in the development of vascular cognitive impairment (VCI) and neurodegenerative diseases. Utilizing the unique model of heterochronic parabiosis, which involves surgically joining young and old animals, we investigated the influence of systemic factors on these vascular changes. Our study employed heterochronic parabiosis to explore the effects of young and aged systemic environments on cerebromicrovascular aging in mice.

View Article and Find Full Text PDF

Components that comprise our brain parenchymal and cerebrovascular structures provide a homeostatic environment for proper neuronal function to ensure normal cognition. Cerebral insults (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!