Deterministic nanoparticle assemblies: from substrate to solution.

Nanotechnology

Hewlett-Packard Laboratories, Palo Alto, CA 94043, USA.

Published: April 2014

The deterministic assembly of metallic nanoparticles is an exciting field with many potential benefits. Many promising techniques have been developed, but challenges remain, particularly for the assembly of larger nanoparticles which often have more interesting plasmonic properties. Here we present a scalable process combining the strengths of top down and bottom up fabrication to generate deterministic 2D assemblies of metallic nanoparticles and demonstrate their stable transfer to solution. Scanning electron and high-resolution transmission electron microscopy studies of these assemblies suggested the formation of nanobridges between touching nanoparticles that hold them together so as to maintain the integrity of the assembly throughout the transfer process. The application of these nanoparticle assemblies as solution-based surface-enhanced Raman scattering (SERS) materials is demonstrated by trapping analyte molecules in the nanoparticle gaps during assembly, yielding uniformly high enhancement factors at all stages of the fabrication process.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/25/15/155302DOI Listing

Publication Analysis

Top Keywords

nanoparticle assemblies
8
metallic nanoparticles
8
deterministic nanoparticle
4
assemblies
4
assemblies substrate
4
substrate solution
4
solution deterministic
4
assembly
4
deterministic assembly
4
assembly metallic
4

Similar Publications

The emerging combination of chemotherapy and radionuclide therapy has been actively investigated to overcome the limitations of monotherapy and augment therapeutic efficacy. However, it remains a challenge to design a single delivery vehicle that can incorporate chemotherapeutics and radionuclides into a compact structure. Here, a chelator DOTA- or NOTA-modified Evans blue conjugated camptothecin molecule (EB-CPT) nanoprodrug was synthesized, which could self-assemble into nanoparticles due to its inherent amphiphilicity.

View Article and Find Full Text PDF

Viedma deracemization mechanisms in self-assembly processes.

Phys Chem Chem Phys

January 2025

Laboratoire Softmat, UMR au CNRS no 5623, Université Paul Sabatier, F-31062 Toulouse, France.

Simulations on an ODE-based model shows that there are many common points between Viedma deracemization and chiral self-assemblies of achiral building blocks towards chiral nanoparticles. Both systems occur in a closed system with energy exchange but no matter exchange with the surroundings and show parallel reversible growth mechanisms which coexist with an irreversible cluster breaking (grinding). The various mechanisms of growth give rise to the formation of polymerization/depolymerization cycles while the consecutive transformation of achiral monomer into chiral cluster results into an indirect enantioselective autocatalysis.

View Article and Find Full Text PDF

Implant-integrated drug delivery systems that enable the release of biologically active factors can be part of an in situ tissue engineering approach to restore biological function. Implants can be functionalized with drug-loaded nanoparticles through a layer-by-layer assembly. Such coatings can release biologically active levels of growth factors.

View Article and Find Full Text PDF

Robotic Microcapsule Assemblies with Adaptive Mobility for Targeted Treatment of Rugged Biological Microenvironments.

ACS Nano

January 2025

Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

Microrobots are poised to transform biomedicine by enabling precise, noninvasive procedures. However, current magnetic microrobots, composed of solid monolithic particles, present fundamental challenges in engineering intersubunit interactions, limiting their collective effectiveness in navigating irregular biological terrains and confined spaces. To address this, we design hierarchically assembled microrobots with multiaxis mobility and collective adaptability by engineering the potential magnetic interaction energy between subunits to create stable, self-reconfigurable structures capable of carrying and protecting cargo internally.

View Article and Find Full Text PDF

Self-assembly of nanoparticles (NPs) in solution has garnered tremendous attention among researchers because of their electrical, chemical, and optoelectronic properties at the macroscale with potential applications in bio-imaging, bio-medicine, and therapeutics. Control of size, shape, and composition at the nanoscale is important in tuning the material's bulk properties. The grafting of NPs with polymers enables us to tune such bulk material properties at the nano level by controlling their assemblies, especially in solutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!