Dual antifungal properties of cationic antimicrobial peptides polybia-MPI: membrane integrity disruption and inhibition of biofilm formation.

Peptides

Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou 730000, PR China. Electronic address:

Published: June 2014

With the increasing emergence of resistant fungi, the discovery and development of novel antifungal therapeutics were urgently needed. Compared with conventional antibiotics, the limited propensity of AMPs to induce resistance in pathogens has attracted great interest. In the present study, the antifungal activity and its mechanism-of-action of polybia-MPI, a cationic peptide from the venom of Social wasp Polybia Paulista was investigated. We demonstrated that polybia-MPI could potently inhibit the growth of Candida albicans (C. albicans) and Candida glabrata (C. glabrata). The 50% inhibitory concentrations (IC50) of Polybia-MPI against cancer cells were much higher than the MICs against the tested C. albicans and C. glabrata cells, indicating that polybia-MPI had high selectivity between the fungal and mammalian cells. Our results also indicated that membrane disturbance mechanism was involved in the antifungal activity. Furthermore, polybia-MPI could inhibit the bio film forming of C. glabrata, which was frequently associated with clinically significant biofilm. These results suggest that polybia-MPI has great advantages in the development of antifungal agents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.peptides.2014.03.005DOI Listing

Publication Analysis

Top Keywords

antifungal activity
8
polybia-mpi
7
dual antifungal
4
antifungal properties
4
properties cationic
4
cationic antimicrobial
4
antimicrobial peptides
4
peptides polybia-mpi
4
polybia-mpi membrane
4
membrane integrity
4

Similar Publications

Antifungal activity of essential oils and their potential synergistic effect with amphotericin B.

Sci Rep

December 2024

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.

Candida albicans is a common opportunistic pathogen, causing infections ranging from superficial to bloodstream infections. The limited antifungal options and rising drug resistance challenge clinical treatment. We screened 98 essential oils and identified 48 with antifungal activity against Candida albicans at 1% concentration, determining their minimum inhibitory concentrations (MIC).

View Article and Find Full Text PDF

Anti-aflatoxin potential of phenolic compounds from common beans (Phaseolus vulgaris L.).

Food Chem

December 2024

Centro para Investigaciones en Granos y Semillas, Universidad de Costa Rica, 11501 San Pedro, San José, Costa Rica. Electronic address:

Common beans (Phaseolus vulgaris L.) are widely consumed legumes in Latin America and Africa, valued for their nutritional compounds and antioxidants. Their high polyphenol content contributes to the antioxidant properties, with bioactive compounds showing antifungal and antimycotoxin effects.

View Article and Find Full Text PDF

<i>Ormocarpum trichocarpum</i> (Taub.) Engl. is a shrub or small tree harvested from the wild as a source of food, traditional medicines and wood.

View Article and Find Full Text PDF

Unlabelled: Excessive production of extracellular matrix is a key component in the pathogenesis of Salzmann's nodular degeneration (SND). studies of drugs that suppress excessive fibroblast activity may become crucial in developing pathogenetically oriented treatments for SND.

Purpose: This study evaluates the antifibrotic properties of pirfenidone and cyclosporine A (CsA) on cell cultures obtained from patients with SND.

View Article and Find Full Text PDF

Rhazya stricta, a perennial shrub native to the Middle East and South Asia, has been used in traditional medicine for various therapeutic purposes, including antimicrobial action. The current study aimed to compare the antifungal properties of 96% and 50% ethanolic extracts of R. stricta leaves and their biogenic silver nanoparticles (AgNPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!