AI Article Synopsis

  • In 2006, bluetongue virus serotype 8 (BTV 8) emerged in the Netherlands, leading to a significant epidemic in sheep and cattle, with severe impacts on animal health and the agrifood economy in affected countries like Belgium, Germany, France, and the UK.
  • To manage and control BTV 8, researchers developed a novel, sensitive, and rapid nucleic acid diagnostic test that can be used in the field without advanced laboratory equipment.
  • The RT-LAMP assay designed for BTV 8 detection is cost-effective, easy to use, highly sensitive, and specific, ensuring that it does not cross-react with similar viruses, making it suitable for use in a variety of settings, including less equipped

Article Abstract

In 2006 bluetongue virus serotype 8 (BTV 8) was identified for the first time in the Netherlands causing a major epidemic in sheep and cattle that quickly spread to neighbouring Belgium, Germany and beyond to France and the UK. This resulted in severe animal health and welfare problems as well as substantial economic losses to the agrifood industries of these countries. Given that the early diagnosis of BTV infection 'in-the-field' is extremely useful to its subsequent management and control, this study was established to design a novel, sensitive and rapid nucleic acid diagnostic test for the serotype-specific detection of BTV 8, which could be used without the use of advanced laboratory support and equipment. Primers for the detection of BTV 8 were based on genome segment 2 of the virus, the VP2 gene. The assay was assessed using a full panel of BTV reference strains and clinical samples. Positive amplification was observed using a fluorescent detection reagent. The sensitivity of the RT-LAMP assay was 102 copies of RNA. The assay did not amplify the closely related orbivirus EHDV. This novel RT-LAMP offers a sensitive, specific and rapid method of detecting BTV 8. The approach is inexpensive and easy to use and could potentially be used in a 'pen-side' setting 'in the field' or by smaller less well-equipped laboratories in developing countries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jviromet.2014.03.004DOI Listing

Publication Analysis

Top Keywords

bluetongue virus
8
clinical samples
8
detection btv
8
btv
6
development accelerated
4
accelerated reverse-transcription
4
reverse-transcription loop
4
loop mediated
4
mediated isothermal
4
isothermal amplification
4

Similar Publications

Peste-des-petits-ruminants (PPR) is primarily a disease of small ruminants caused by peste-des-petits-ruminants virus (PPRV; , ), formerly the small ruminant morbillivirus. PPRV can cause significant morbidity and mortality in small ruminants and a significant economic impact. Conventional reverse-transcription PCR (RT-PCR), and probe-based and SYBR Green-based RT quantitative real-time PCR (RT-qPCR), are employed for the molecular detection of PPRV.

View Article and Find Full Text PDF

Bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) are vector-borne orbiviruses that pose an emerging threat to livestock, including cattle and sheep. This review summarizes the global distribution, genetic diversity, and key factors driving their spread along with the existing knowledge gaps and recommendations to mitigate their impact. Both viruses cause hemorrhagic disease in susceptible ruminants and are commonly reported in tropical and subtropical regions including North America, Asia, Africa, Oceania, and some parts of Europe.

View Article and Find Full Text PDF

Bluetongue (BT) is considered endemic in the southern states of India, with sporadic incidences reported from the northern, western and central parts of India. However, the eastern and north-eastern states of India have not experienced active disease so far. In the recent past, an extensive sero-epidemiological investigation was carried out in the eastern and north-eastern Indian states.

View Article and Find Full Text PDF

Double-stranded RNA orbivirus disrupts the DNA-sensing cGAS-sting axis to prevent type I IFN induction.

Cell Mol Life Sci

January 2025

Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Valdeolmos, Madrid, Spain.

Cyclic GMP-AMP synthase (cGAS) is a DNA sensing cellular receptor that induces IFN-I transcription in response to pathogen and host derived cytosolic DNA and can limit the replication of some RNA viruses. Some viruses have nonetheless evolved mechanisms to antagonize cGAS sensing. In this study, we evaluated the interaction between Bluetongue virus (BTV), the prototypical dsRNA virus of the Orbivirus genus and the Sedoreoviridae family, and cGAS.

View Article and Find Full Text PDF

Background: The detection of multiple bluetongue virus serotypes, increasing trend in livestock density, rich biological diversity with high endemism, and the status of the Andaman and Nicobar Islands as a popular tourist destination underscore the need for a faunistic survey of medically and veterinary significant vector species, specifically Culicoides, in this region. Moreover, scattered information on Indian Culicoides species complicates the planning and implementation of preventive measures for pathogens transmitted by these vectors. This study aims to provide the first comprehensive account of the Culicoides fauna in the Andaman and Nicobar Islands, India, along with an updated checklist of Indian Culicoides species and their state-wise distribution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!