Repetitive low-force contractions are common in the workplace and yet can lead to muscle fatigue and work-related musculoskeletal disorders. The current study aimed to investigate potential motion adaptations during a simulated repetitive light assembly work task designed to fatigue the shoulder region, focusing on changes over time and age-related group differences. Ten younger and ten older participants performed four 20-min task sessions separated by short breaks. Mean and variability of joint angles and scapular elevation, joint net moments for the shoulder, elbow, and wrist were calculated from upper extremity kinematics recorded by a motion tracking system. Results showed that joint angle and joint torque decreased across sessions and across multiple joints and segments. Increased kinematic variability over time was observed in the shoulder joint; however, decreased kinematic variability over time was seen in the more distal part of the upper limb. The changes of motion adaptations were sensitive to the task-break schedule. The results suggested that kinematic and kinetic adaptations occurred to reduce the biomechanical loading on the fatigued shoulder region. In addition, the kinematic and kinetic responses at the elbow and wrist joints also changed, possibly to compensate for the increased variability caused by the shoulder joint while still maintaining task requirements. These motion strategies in responses to muscle fatigue were similar between two age groups although the older group showed more effort in adaptation than the younger in terms of magnitude and affected body parts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jelekin.2014.02.001DOI Listing

Publication Analysis

Top Keywords

kinematic kinetic
12
upper extremity
8
kinetic adaptations
8
muscle fatigue
8
motion adaptations
8
shoulder region
8
elbow wrist
8
kinematic variability
8
variability time
8
shoulder joint
8

Similar Publications

Introduction: The three-dimensional evaluation of patients in the gait laboratory is a diagnostic method that is gaining ground in various orthopedic pathologies and, in the case of ankle fractures, can more accurately detail the degree of joint limitation.

Objective: To present the importance of laboratory gait studies in the postoperative period of ankle fractures associated with syndesmosis ligament injuries, increasing the arsenal for assessing whether the surgical approach and outcome were satisfactory.

Methods: Case series of 13 patients who underwent surgical treatment for ankle fractures associated with syndesmosis injuries, evaluated postoperatively in the gait clinic using the BTS GAITLAB hardware program.

View Article and Find Full Text PDF

Acute Effects of Unplanned and Planned Hop-Landing Training on Neurocognitive Function and Knee Biomechanics.

Orthop J Sports Med

January 2025

School of Sport, Rehabilitation, and Exercise Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, United Kingdom.

Background: Athletes with decreased baseline neurocognitive function may experience noncontact anterior cruciate ligament (ACL) injury in unanticipated athletic situations. Many ACL injury prevention programs (IPPs) focus on improving closed-skill movements (eg, planned landing). However, the more open-skill movements (eg, unplanned reactive movements) required in unpredictable sports scenarios are commonly absent from ACL IPPs, and the acute effects of open-skill training on neurocognitive function remain unclear.

View Article and Find Full Text PDF

Middle-age and older runners demonstrate differences in running biomechanics compared with younger runners. Female runners demonstrate differences in running biomechanics compared with males, and females experience hormonal changes during menopause that may also affect age-related changes in running biomechanics. The purpose of this study was to determine the relationship between age and running biomechanics in healthy female recreational runners.

View Article and Find Full Text PDF

Context: To further improve rehabilitation programs while preventing overstretching the anterior cruciate ligament (ACL), a thorough understanding of the knee kinematics and ACL length change during closed kinetic chain and open kinetic chain (OKC) exercises is essential. The measurement of ACL graft length relates to the changes in strain experienced by the ACL graft during different types of exercises rather than simple physical length.

Objective: This study aimed to determine the effects of closed kinetic chain and OKC exercises on tibiofemoral kinematics and ACL graft length changes following double-bundle ACL reconstruction.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how deep learning can compare gait cycle time series from healthy children assessed in two different labs using similar protocols.
  • Researchers used a ResNet-based model that effectively identified the source of each dataset with high accuracy by analyzing various gait parameters.
  • The findings highlight the need for standardized protocols and effective data pre-processing to improve the consistency and applicability of machine learning models in clinical environments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!