Background: Feline immunodeficiency virus (FIV) is a widespread pathogen of the domestic cat and an important animal model for human immunodeficiency virus (HIV) research. In contrast to HIV, only limited information is available on the transcriptional host cell response to FIV infections. This study aims to identify FIV-induced gene expression changes in feline T-cells during the early phase of the infection. Illumina RNA-sequencing (RNA-seq) was used identify differentially expressed genes (DEGs) at 24 h after FIV infection.

Results: After removal of low-quality reads, the remaining sequencing data were mapped against the cat genome and the numbers of mapping reads were counted for each gene. Regulated genes were identified through the comparison of FIV and mock-infected data sets. After statistical analysis and the removal of genes with insufficient coverage, we detected a total of 69 significantly DEGs (44 up- and 25 down-regulated genes) upon FIV infection. The results obtained by RNA-seq were validated by reverse transcription qPCR analysis for 10 genes.

Discussion And Conclusion: Out of the most distinct DEGs identified in this study, several genes are already known to interact with HIV in humans, indicating comparable effects of both viruses on the host cell gene expression and furthermore, highlighting the importance of FIV as a model system for HIV. In addition, a set of new genes not previously linked to virus infections could be identified. The provided list of virus-induced genes may represent useful information for future studies focusing on the molecular mechanisms of virus-host interactions in FIV pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3999937PMC
http://dx.doi.org/10.1186/1743-422X-11-52DOI Listing

Publication Analysis

Top Keywords

host cell
12
immunodeficiency virus
12
cell response
8
feline immunodeficiency
8
gene expression
8
fiv
7
genes
7
transcriptional profiling
4
profiling host
4
response feline
4

Similar Publications

Vaccinia growth factor-dependent modulation of the mTORC1-CAD axis upon nutrient restriction.

J Virol

January 2025

Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA.

The molecular mechanisms by which vaccinia virus (VACV), the prototypical member of the poxviridae family, reprograms host cell metabolism remain largely unexplored. Additionally, cells sense and respond to fluctuating nutrient availability, thereby modulating metabolic pathways to ensure cellular homeostasis. Understanding how VACV modulates metabolic pathways in response to nutrient signals is crucial for understanding viral replication mechanisms, with the potential for developing antiviral therapies.

View Article and Find Full Text PDF

Discovery of a heparan sulfate binding domain in monkeypox virus H3 as an anti-poxviral drug target combining AI and MD simulations.

Elife

January 2025

State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.

Viral adhesion to host cells is a critical step in infection for many viruses, including monkeypox virus (MPXV). In MPXV, the H3 protein mediates viral adhesion through its interaction with heparan sulfate (HS), yet the structural details of this interaction have remained elusive. Using AI-based structural prediction tools and molecular dynamics (MD) simulations, we identified a novel, positively charged α-helical domain in H3 that is essential for HS binding.

View Article and Find Full Text PDF

Phage-ELISA for ultrasensitive detection of .

Analyst

January 2025

College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China.

The M13 phage carries approximately 5 copies of the pIII protein, each of which is capable of displaying a single-chain variable fragment (scFv) that targets a specific antigen. This feature enables the M13 phage to be widely employed in the construction of scFv libraries, thereby facilitating the identification of antibodies with high specificity and affinity for target antigens. In this study, mice were immunized three times with (strain C50041) to induce diverse antibodies.

View Article and Find Full Text PDF

How are autoreactive T cells induced and regulated in patients with autoimmune disease? This question lies at the core of understanding autoimmune disease pathologies, yet it has remained elusive due to host variability and the complexity of the immune system. In this issue of the JCI, Kramer and colleagues used autoimmune hepatitis (AIH) as a model to explore the maintenance of autoreactive CD4+ T cells specific to O-phosphoseryl-tRNA:selenocysteine tRNA synthase (SepSecS). The findings provide insight into the interaction between T cells and B cells in AIH pathogenesis that may reflect a shared mechanism among other autoimmune diseases.

View Article and Find Full Text PDF

Antiparasitic activity of the iron-containing milk protein lactoferrin and its potential derivatives against human intestinal and blood parasites.

Front Parasitol

February 2024

Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, KY, United States.

An iron-containing milk protein named lactoferrin (Lf) has demonstrated antiparasitic and immunomodulatory properties against a variety of human parasites. This protein has shown its capability to bind and transport iron molecules in the vicinity of the host-pathogen environment. The ability of parasites to sequester the iron molecule and to increase their pathogenicity and survival depends on the availability of iron sources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!