Role of 2-hexyl, 5-propyl resorcinol production by Pseudomonas chlororaphis PCL1606 in the multitrophic interactions in the avocado rhizosphere during the biocontrol process.

FEMS Microbiol Ecol

Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Facultad de Ciencias, Málaga, Spain.

Published: July 2014

Different bacterial traits can contribute to the biocontrol of soilborne phytopathogenic fungus. Among others, (1) antagonism, (2) competition for nutrients and niches, (3) induction of systemic resistance of the plants and (4) predation and parasitism are the most studied. Pseudomonas chlororaphis PCL1606 is an antagonistic rhizobacterium that produces the antifungal metabolite 2-hexyl, 5-propyl resorcinol (HPR). This bacterium can biologically control the avocado white root rot caused by Rosellinia necatrix. Confocal laser scanning microscopy of the avocado rhizosphere revealed that this biocontrol bacterium and the fungal pathogen compete for the same niche and presumably also for root exudate nutrients. The use of derivative mutants in the geners related to HPR biosynthesis (dar genes) revealed that the lack of HPR production by P. chlororaphis PCL1606 negatively influences the bacterial colonisation of the avocado root surface. Microscopical analysis showed that P. chlororaphis PCL1606 closely interacts and colonises the fungal hyphae, which may represent a novel biocontrol mechanism in this pseudomonad. Additionally, the presence of HPR-producing biocontrol bacteria negatively affects the ability of the fungi to infect the avocado root. HPR production negatively affects hyphal growth, leading to alterations in the R. necatrix physiology visible under microscopy, including the curling, vacuolisation and branching of hyphae, which presumably affects the colonisation and infection abilities of the fungus. This study provides the first report of multitrophic interactions in the avocado rhizosphere, advancing our understanding of the role of HPR production in those interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1574-6941.12319DOI Listing

Publication Analysis

Top Keywords

chlororaphis pcl1606
16
avocado rhizosphere
12
hpr production
12
2-hexyl 5-propyl
8
5-propyl resorcinol
8
pseudomonas chlororaphis
8
multitrophic interactions
8
interactions avocado
8
avocado root
8
avocado
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!