A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Static density functional study of graphene-hexagonal bilayer ice interaction. | LitMetric

Static density functional study of graphene-hexagonal bilayer ice interaction.

J Phys Chem A

Laboratory for Water and Surface Studies Department of Chemistry, Tufts University, 62 Pearson Avenue, Medford, Massachusetts 02155, Unites States.

Published: September 2014

Periodic static ab initio studies are conducted of hexagonal bilayer ice (HBL) and basal layers of ice-1h adsorbed on graphene using the model BLYP-D in CRYSTAL09. Eight high-symmetry periodic forms of HBL are optimized, of which four have lower energy; their electronic binding energy to graphene is ∼1.6 kcal/mol per abutting H2O. Optimized geometries have the property of maximizing the occurrence of a certain O-H-C alignment motif. One lattice is selected for more detailed study. Its 2-D shear translation potential energy surface is found to have barrier heights in two zigzag directions of ∼140 cal/mol per abutting H2O. A second hexagonal bilayer can be added and the electronic binding energy drops from ∼1.7 to ∼1.0 kcal/mol per abutting H2O. For ice-1h monolayer adsorbed on graphene, a proton-ordered form in which half of the O's nearest the graphene carry a proton pointing toward graphene is preferred over proton-ordered forms in which either all or none of those O's have H's pointing toward graphene. Cohesive energy for two-layer ice-1h on graphene is 0.66 kcal/mol of H2O higher than for HBL, supporting experimental evidence that the graphene+HBL isomer is more stable. However, the HBL and two-HBL structures are unstable or at best metastable with respect to four layers of ice-1h.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp500360nDOI Listing

Publication Analysis

Top Keywords

abutting h2o
12
bilayer ice
8
hexagonal bilayer
8
layers ice-1h
8
adsorbed graphene
8
electronic binding
8
binding energy
8
kcal/mol abutting
8
pointing graphene
8
graphene
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!