High throughput method for the indirect detection of intramolecular hydrogen bonding.

J Med Chem

Groton Laboratories, Worldwide Medicinal Chemistry, Pfizer Global Research & Development , Eastern Point Road, Groton, Connecticut 06340, United States.

Published: April 2014

A supercritical fluid chromatography method was developed for the detection of intramolecular hydrogen bonds in pharmaceutically relevant molecules. The identification of compounds likely to form intramolecular hydrogen bonds is an important drug design consideration given the correlation of intramolecular hydrogen bonding with increased membrane permeability. The technique described here correlates chromatographic retention with the exposed polarity of a molecule. Molecules that can form an intramolecular hydrogen bond can hide their polarity and therefore exhibit lower retention than similar compounds that cannot. By use of a pairwise analysis strategy, intramolecular hydrogen bonds are identified within a test set of compounds with diverse topologies. The chromatographic results are confirmed by NMR chemical shift and temperature coefficient studies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm401859bDOI Listing

Publication Analysis

Top Keywords

intramolecular hydrogen
24
hydrogen bonds
12
detection intramolecular
8
hydrogen bonding
8
form intramolecular
8
intramolecular
6
hydrogen
6
high throughput
4
throughput method
4
method indirect
4

Similar Publications

Theoretical insights into fluorescent properties and ESIPT behavior of novel flavone-based fluorophore and its thiol and thione derivatives.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China. Electronic address:

For the typical ESIPT process, the proton transfer process is often completed via the intramolecular hydrogen bond (IHB) with oxygen or nitrogen as proton donor or proton acceptor. In recent years, the ESIPT process for sulfur-containing hydrogen bonds has received more and more attention, but it has been rarely reported. We systematically studied the ESIPT processes and photophysical properties of 2-(benzothiophene-2-yl)-3-hydroxy-4H-chromen-4-one (BTOH), 2-(benzothiophene-2-yl)-3-mercapto-4H-chromen-4-one (BTSH) and 2-(benzothiophen-2-yl)-3-hydroxy-4H-chromene-4-thione (BTS) at the HISSbPBE/6-31+G(d,p) and TD-HISSbPBE/6-31+G(d,p) computational level.

View Article and Find Full Text PDF

Synergy of Copper Doping and Carbon Defect Engineering in Promoting C-C Coupling for Enhanced CO Photoreduction to Ethanol Activity.

ACS Appl Mater Interfaces

December 2024

Key Laboratory of Industrial Ecology and Environment Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.

Photocatalytic conversion of carbon dioxide (CO) to fuel provides an ideal pathway to achieving carbon neutrality. One significant hindrance in achieving the reduction of CO to higher energy density multicarbon products (C) was the difficulty in coupling C-C bonds efficiently. Copper (Cu) is considered the most suitable metal catalyst for C-C coupling to form C products in the CO reduction reaction (CORR), but it encounters challenges such as low product selectivity and slow catalytic efficiency.

View Article and Find Full Text PDF

Clean and sustainable extraction of gelatin: Effects of microwave and freeze-thaw on the crosslinking degree and hydrogen bond of fish skin collagen.

Food Chem

December 2024

College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, China. Electronic address:

The traditional gelatin extraction methods (acid-base) may hinder to their green applications due to mass energy consumption and pollution. Herein, we constructed a clean and sustainable gelatin extraction method, investigated the molecular mechanism of microwave treatment (0-360 min) and freeze-thaw on the gelatin extraction from the perspective of the crosslinking degree and hydrogen bonds. Microwave (0-60 min) can improve the hydrolysis degree (DH) and expose more enzyme cleavage sites of collagen by destroying the intramolecular and intermolecular covalent crosslinking.

View Article and Find Full Text PDF

Apigenin (Api), a flavonoid possessing dual features of antioxidant activity and intramolecular hydrogen bond (IMHB), is subjected to an external electric field (EEF) to investigate its excited-state antioxidant activity after excited state intramolecular proton transfer (ESIPT) behavior employing the density functional theory (DFT) and time-dependent DFT (TD-DFT) methods, as well as molecular docking. The existence of IMHB is demonstrated by structural parameters and AIM topological analysis, where Api in the enol form under an EEF of +60 × 10 a.u.

View Article and Find Full Text PDF

For over three decades, praziquantel (PZQ) has been the mainstay chemotherapy for prevention and treatment of schistosomiasis. The excessive use of PZQ, coupled with the lack of advanced drug candidates in the current anti-schistosomiasis drug development pipeline, emphasizes the genuine need for new drugs. In the current work, we investigated the antischistosomal potential of a new series of compounds derived from the privileged benzimidazole scaffold, which exhibited low micromolar IC potency in the range of 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!