AI Article Synopsis

  • Research highlights the importance of using macroeconomic policy and cost-benefit analysis to control volatile organic compounds (VOCs) for a better air environment.
  • A dynamic CGE model was used to predict VOCs emissions until 2020 based on 2007 reference data, and imposing an environmental tax on high-emission industries was analyzed.
  • The results indicated that while the environmental tax could reduce VOCs emissions, it also caused high costs and affected interconnected sectors like transportation, suggesting the need for targeted subsidies alongside the tax.

Article Abstract

Researches on controlling volatile organic compounds (VOCs) through macroeconomic policy from the view of cost-benefit analysis are very important for our country to improve the air environment. Based on our previous study, this paper predicted future VOCs emissions until 2020 under current policies with 2007 as reference year by using dynamic CGE model. Meanwhile, environmental tax was imposed in ten industries with high emission and the impacts of emissions and economic system were discussed. Finally, policy implementations for VOCs emission control were suggested for policy-makers. The results showed that environment tax could mitigate VOCs emission, but it also resulted in high cost. Owing to the highly related relationship between different sectors, although transport sector was not taxed, it also suffered a great economic influence. Thus, when using the tax policy for reducing VOCs, subsidy for special sector is necessary.

Download full-text PDF

Source

Publication Analysis

Top Keywords

vocs emission
12
vocs
5
[study vocs
4
emission
4
emission prediction
4
prediction control
4
control based
4
based dynamic
4
dynamic cge]
4
cge] researches
4

Similar Publications

The Characteristics, Sources, and Health Risks of Volatile Organic Compounds in an Industrial Area of Nanjing.

Toxics

November 2024

Joint International Research Laboratory of Climate and Environment Change, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.

This study investigates the chemical complexity and toxicity of volatile organic compounds (VOCs) emitted from national petrochemical industrial parks and their effects on air quality in an industrial area of Nanjing, China. Field measurements were conducted from 1 December 2022, to 17 April 2023, focusing on VOC concentrations and speciations, diurnal variations, ozone formation potential (OFP), source identification, and associated health risks. The results revealed an average total VOC (TVOC) concentration of 15.

View Article and Find Full Text PDF

Ischemic heart disease (IHD) impacts the quality of life and is the most frequently reported cause of morbidity and mortality globally. To assess the changes in the exhaled volatile organic compounds (VOCs) in patients with vs. without ischemic heart disease (IHD) confirmed by stress computed tomography myocardial perfusion (CTP) imaging.

View Article and Find Full Text PDF

Soil cadmium pollution elicits sex-specific plant volatile emissions in response to insect herbivory in eastern cottonwood Populus deltoides.

Plant Physiol Biochem

December 2024

Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China. Electronic address:

Soil heavy metal pollution is a major abiotic stressor frequently encountered by plants in conjunction with other biotic stresses like insect herbivory. Yet, it remains largely unexplored how soil metal pollution and insect herbivory act together to influence emissions of plant volatile organic compounds (VOCs), which mediate multiple ecological functions and play crucial roles in atmospheric processes. Here, we assessed the individual and combined effects of soil cadium (Cd) pollution and insect herbivory by Clostera anachoreta on VOC emissions from the seedlings of eastern cottonwood Populus deltoides, and whether these effects depend on plant sex.

View Article and Find Full Text PDF

Emission rates for volatile organic compounds (VOCs) have been quantified from frying, spice and herb cooking, and cooking a chicken curry, using real-time selected-ion flow-tube mass spectrometry (SIFT-MS) for controlled, laboratory-based experiments in a semi-realistic kitchen. Emissions from 7 different cooking oils were investigated during the frying of wheat flatbread (puri). These emissions were dominated by ethanol, octane, nonane and a variety of aldehydes, including acetaldehyde, heptenal and hexanal, and the average concentration of acetaldehyde (0.

View Article and Find Full Text PDF

The real-time detection of gaseous HO and its typical isotopic molecules, e.g., HO, DO, HDO, and HTO, is highly desirable in many fundamental scientific studies and practical monitoring, such as mechanistic studies of HO-involved chemical reactions and radiation risk warning of abnormal HTO emissions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!