Autism spectrum disorder (ASD) is a heterogeneous condition affecting an individual's ability to communicate and socialize and often presents with repetitive movements or behaviors. It tends to be severe with less than 10% achieving independent living with a marked variation in the progression of the condition. To date, the literature supports a multifactorial model with the largest, most detailed twin study demonstrating strong environmental contribution to the development of the condition. Here, we present a brief review of the neurological, immunological, and autonomic abnormalities in ASD focusing on the causative roles of environmental agents and abnormal gut microbiota. We present a working hypothesis attempting to bring together the influence of environment on the abnormal neurological, immunological, and neuroimmunological functions and we explain in brief how such pathophysiology can lead to, and/or exacerbate ASD symptomatology. At present, there is a lack of consistent findings relating to the neurobiology of autism. Whilst we postulate such variable findings may reflect the marked heterogeneity in clinical presentation and as such the variable findings may be of pathophysiological relevance, more research into the neurobiology of autism is necessary before establishing a working hypothesis. Both the literature review and hypothesis presented here explore possible neurobiological explanations with an emphasis of environmental etiologies and are presented with this bias.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3945747PMC
http://dx.doi.org/10.3389/fendo.2014.00029DOI Listing

Publication Analysis

Top Keywords

neurological immunological
8
working hypothesis
8
neurobiology autism
8
variable findings
8
autism
5
neuro-immune abnormalities
4
abnormalities autism
4
autism relationship
4
relationship environment
4
environment variable
4

Similar Publications

Neuropsychiatric manifestations in systemic lupus erythematosus and Sjogren's disease.

Autoimmun Rev

January 2025

Department of Orthopedics, Rheumatology and Traumatology-School of Medical Sciences, University of Campinas, Brazil; Autoimmunity Lab, School of Medical Sciences, University of Campinas, Brazil. Electronic address:

Introduction: Autoimmune diseases often present in a systemic manner, affecting various organs and tissues. Involvement of the central and peripheral nervous system is not uncommon in these conditions and is associated with high morbidity and mortality. Therefore, early recognition of the neuropsychiatric manifestations associated with rheumatologic diseases is essential for the introduction of appropriate therapies with the objective of providing a better quality of life for individuals.

View Article and Find Full Text PDF

Background: Evidence from preclinical studies suggests that IL-6 signalling has the potential to modulate immunopathogenic mechanisms upstream of autoantibody effector mechanisms in patients with generalised myasthenia gravis. We aimed to assess the safety and efficacy of satralizumab, a humanised monoclonal antibody targeting the IL-6 receptor, in patients with generalised myasthenia gravis.

Methods: LUMINESCE was a randomised, double-blind, placebo-controlled, multicentre, phase 3 study at 105 sites, including hospitals and clinics, globally.

View Article and Find Full Text PDF

Background: Given burdensome side-effects and long latency for efficacy with conventional agents, there is a continued need for generalised myasthenia gravis treatments that are safe and provide consistently sustained, long-term disease control. Nipocalimab, a neonatal Fc receptor blocker, was associated with dose-dependent reductions in total IgG and anti-acetylcholine receptor (AChR) antibodies and clinically meaningful improvements in the Myasthenia Gravis Activities of Daily Living (MG-ADL) scale in patients with generalised myasthenia gravis in a phase 2 study. We aimed to assess the safety and efficacy of nipocalimab in a phase 3 study.

View Article and Find Full Text PDF

The complicated neurological syndrome known as multiple sclerosis (MS) is typified by demyelination, inflammation, and neurodegeneration in the central nervous system (CNS). Managing this crippling illness requires an understanding of the complex interactions between neurophysiological systems, diagnostic techniques, and therapeutic methods. A complex series of processes, including immunological dysregulation, inflammation, and neurodegeneration, are involved in the pathogenesis of MS.

View Article and Find Full Text PDF

Unlabelled: Spondyloenchondrodysplasia (SPENCD) is a rare genetic disorder characterized with skeletal dysplasia, immune dysregulation, and neurological impairment. Patients diagnosed with SPENCD at a single pediatric hematology center were included in the study. The patients' clinical characteristics, symptoms at presentation, imaging and laboratory results, and genetic analysis results were collected retrospectively from their files.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!