The determination of RNA folding nearest neighbor parameters.

Methods Mol Biol

Department of Genome Sciences, University of Washington, Seattle, WA, USA.

Published: November 2014

The stability of RNA secondary structure can be predicted using a set of nearest neighbor parameters. These parameters are widely used by algorithms that predict secondary structure. This contribution introduces the UV optical melting experiments that are used to determine the folding stability of short RNA strands. It explains how the nearest neighbor parameters are chosen and how the values are fit to the data. A sample nearest neighbor calculation is provided. The contribution concludes with new methods that use the database of sequences with known structures to determine parameter values.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-62703-709-9_3DOI Listing

Publication Analysis

Top Keywords

nearest neighbor
16
neighbor parameters
12
secondary structure
8
determination rna
4
rna folding
4
nearest
4
folding nearest
4
neighbor
4
parameters
4
parameters stability
4

Similar Publications

Background And Objective: This study delves into the parenting cognition perspectives on COVID-19 in children, exploring symptoms, transmission modes, and protective measures. It aims to correlate these perspectives with sociodemographic factors and employ advanced machine-learning techniques for comprehensive analysis.

Method: Data collection involved a semi-structured questionnaire covering parental knowledge and attitude on COVID-19 symptoms, transmission, protective measures, and government satisfaction.

View Article and Find Full Text PDF

CECT-Based Radiomic Nomogram of Different Machine Learning Models for Differentiating Malignant and Benign Solid-Containing Renal Masses.

J Multidiscip Healthc

January 2025

Department of Nuclear Medicine, The First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, People's Republic of China.

Objective: This study aimed to explore the value of a radiomic nomogram based on contrast-enhanced computed tomography (CECT) for differentiating benign and malignant solid-containing renal masses.

Materials And Methods: A total of 122 patients with pathologically confirmed benign (n=47) or malignant (n=75) solid-containing renal masses were enrolled in this study. Radiomic features were extracted from the arterial, venous and delayed phases and further analysed by dimensionality reduction and selection.

View Article and Find Full Text PDF

Air pollution is a critical global environmental issue, further exacerbated by rapid industrialization and urbanization. Accurate prediction of air pollutant concentrations is essential for effective pollution prevention and control measures. The complex nature of pollutant data is influenced by fluctuating meteorological conditions, diverse pollution sources, and propagation processes, underscores the crucial importance of the spatial and temporal feature extraction for accurately predicting air pollutant concentrations.

View Article and Find Full Text PDF

Ocrelizumab (OCR) and Natalizumab (NTZ) are highly effective treatments widely used in Multiple Sclerosis (MS). However, long-term, real-world comparative data on clinical effectiveness, safety and treatment persistence are limited. This retrospective analysis included relapsing and progressive MS patients initiating treatment at two Italian Universities ("La Sapienza" and "Federico II").

View Article and Find Full Text PDF

ST-CIRL: a reinforcement learning-based feature selection approach for enhanced anxiety classification.

Physiol Meas

January 2025

Department of Electronics and Communication , Delhi Technological University Department of Electronics and Communication, Delhi Technological university, Bawana, New Delhi-42, New Delhi, Delhi, 110042, INDIA.

A physiological signal-based Human-Computer Interaction (HCI) system provides a communication link between human emotional states and external devices. Accurately classifying these signals is vital for effective interaction, which requires extracting and selecting the most discriminative features to differentiate between various emotional states. This paper introduces the SMOTETomek-Correlated Interactive Reinforcement Learning (ST-CIRL) framework for anxiety classification, which leverages meta-descriptive statistics to enhance the state representation in the reinforcement learning process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!