The left ventricular free wall (LVFW) grew approximately three times faster than the right ventricular free wall (RVFW) during the first 10 days of life in neonatal pigs. Faster growth was associated with proportional increases in total RNA and messenger RNA. These findings indicated that greater capacity for protein synthesis was a major factor in accelerated growth. Despite faster growth, heart content of ribosomal subunits was higher in piglets than in 60-day-old pigs or adult rats, suggesting a relatively slower rate of peptide chain initiation than elongation. When hearts from 5-day-old pigs were perfused in vitro, protein synthesis was more rapid in the LVFW than in the RVFW. In the absence of added insulin, the higher rate was due to both greater efficiency and greater capacity for protein synthesis. In the presence of the hormone, greater capacity was responsible for the increased rate of protein synthesis in the LVFW as compared with the RVFW.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.res.64.2.360DOI Listing

Publication Analysis

Top Keywords

protein synthesis
16
greater capacity
12
growth heart
8
ventricular free
8
free wall
8
faster growth
8
capacity protein
8
mechanisms differential
4
growth
4
differential growth
4

Similar Publications

ZBP1 senses DNA triggering type I interferon signaling pathway and unfolded protein response activation.

Front Immunol

January 2025

Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

The innate immune system promptly detects and responds to invading pathogens, with a key role played by the recognition of bacterial-derived DNA through pattern recognition receptors. The Z-DNA binding protein 1 (ZBP1) functions as a DNA sensor inducing type I interferon (IFN) production, innate immune responses and also inflammatory cell death. ZBP1 interacts with cytosolic DNA via its DNA-binding domains, crucial for its activation.

View Article and Find Full Text PDF

Transcription factor specificity protein (SP) family in renal physiology and diseases.

PeerJ

January 2025

Department of Nephrology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.

Dysregulated specificity proteins (SPs), members of the C2H2 zinc-finger family, are crucial transcription factors (TFs) with implications for renal physiology and diseases. This comprehensive review focuses on the role of SP family members, particularly SP1 and SP3, in renal physiology and pathology. A detailed analysis of their expression and cellular localization in the healthy human kidney is presented, highlighting their involvement in fatty acid metabolism, electrolyte regulation, and the synthesis of important molecules.

View Article and Find Full Text PDF

Introduction: Several aspects of the involvement of HPV in the pathogenesis of HPV-associated diseases remain poorly understood including mechanistic aspects of infection and the question of why the majority of HPV-positive HNSCC-patients are non-smokers, whereas HPV-negatives are smokers. Our previous research, based on 1,100 patient samples, hypothesized an explanation for this phenomenon: Smoking induces upregulation of a mucosal protective protein (SLPI), which competes with HPV for binding to Annexin A2 (AnxA2), pivotal for HPV cell entry. Here we investigate the mechanistic aspects of our hypothesis using transfection assays.

View Article and Find Full Text PDF

Low fracture toughness, low-temperature degradation (LTD) susceptibility, and inadequate soft tissue integration greatly limit the application of zirconia ceramic abutment. Integrating the "surface" of hard all-ceramic materials into the gingival soft tissue and simultaneously promoting the "inner" LTD resistance and fracture toughness is challenging. Composite ceramics are effective in improving the comprehensive properties of materials.

View Article and Find Full Text PDF

Recent advances of lysine lactylation in prokaryotes and eukaryotes.

Front Mol Biosci

January 2025

Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Lysine lactylation is a newly discovered protein post-translational modification that plays regulatory roles in cell metabolism, growth, reprogramming, and tumor progression. It utilizes lactate as the modification precursor, which is an end product of glycolysis while functioning as a signaling molecule in cells. Unlike previous reviews focused primarily on eukaryotes, this review aims to provide a comprehensive summary of recent knowledge about lysine lactylation in prokaryotes and eukaryotes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!