Motion sickness or kinetosis is the result of the abnormal neural output originated by visual, proprioceptive and vestibular mismatch, which reverses once the dysfunctional sensory information becomes coherent. The space adaptation syndrome or space sickness relates to motion sickness; it is considered to be due to yaw, pith, and roll coordinates mismatch. Several behavioural and pharmacological measures have been proposed to control these vestibular-associated movement disorders with no success. Galvanic vestibular stimulation has the potential of up-regulating disturbed sensory-motor mismatch originated by kinetosis and space sickness by modulating the GABA-related ion channels neural transmission in the inner ear. It improves the signal-to-noise ratio of the afferent proprioceptive volleys, which would ultimately modulate the motor output restoring the disordered gait, balance and human locomotion due to kinetosis, as well as the spatial disorientation generated by gravity transition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/0004-282X20130182 | DOI Listing |
PLoS One
January 2025
Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
Objective: This multicenter, randomized, double-blind, placebo-controlled, crossover trial aimed to evaluate whether prolonged noisy galvanic vestibular stimulation improves body balance in patients with vestibulopathy.
Materials And Methods: This trial was registered in the Japan Pharmaceutical Information Center Clinical Trials Information registry (jRCT1080224083). Subjects were 20- to 85-year-old patients who had been unsteady for more than one year and whose symptoms had persisted despite more than six months of rehabilitation.
Exp Brain Res
January 2025
School of Psychological Sciences, Birkbeck University of London, Malet St, London, WC1E 7HX, UK.
Verticality is the perception of what's upright relative to gravity. The vestibular system provides information about the head's orientation relative to gravity, while visual cues influence the perception of external objects' alignment with the vertical. According to Bayesian integration, the perception of verticality depends on the relative reliability of visual and vestibular cues.
View Article and Find Full Text PDFExp Brain Res
January 2025
Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
Vestibular dysfunction has been reported as a potential cause in adolescent idiopathic scoliosis (AIS). However, it remained unclear how stochastic galvanic vestibular stimulation (GVS) affected kinetic performance of patients with AIS. This study aimed to investigate the effect of stochastic GVS on ground reaction forces (GRF) measures during obstacle negotiation among patients with AIS.
View Article and Find Full Text PDFFront Hum Neurosci
December 2024
Programa de Pós-Graduação em Infectologia e Medicina Tropical, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
Introduction: Galvanic vestibular stimulation (GVS) is a simple, safe, and noninvasive method of neurostimulation that can be used to improve body balance. Several central nervous system diseases cause alterations in body balance, including HTLV-1-associated myelopathy (HAM).
Objective: To test GVS as a balance rehabilitation strategy for HAM.
In sensory perception, stochastic resonance (SR) refers to the application of noise to enhance information transfer, allowing for the sensing of lower-level stimuli. Previously, subjective-assessments identified SR in vestibular perceptual thresholds, assessed using a standard two alternative (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!