All primary nasopharyngeal carcinoma (NPC) tumors contain hypoxic regions which are implicated in decreased local control and increased distant metastases, as well as resistance to chemotherapy in advanced NPC patients. One of the promising therapeutic approaches for NPC is to use drugs that can target hypoxic factors in tumors. In the present investigation, the type I ribosome inactivating protein α-momorcharin (α-MMC), isolated from seeds of the bitter gourd Momordica charantia, reduced cell viability and inhibited clonogenic formation of human NPC CNE2 and HONE1 cells under normoxia and cobalt chloride-induced hypoxia. By comparison, α-MMC exhibited only slight cytotoxicity on human nasopharyngeal epithelial NP69 cells under normoxia. Interestingly, α-MMC suppressed the expression levels of hypoxia-inducible factor 1-alpha (HIF1α) and vascular endothelial growth factor (VEGF) in hypoxic NPC, as well as the growth of human umbilical vein endothelial cells. Further study disclosed that α-MMC targeted endoplasmic reticulum and down-regulated unfolded protein response (UPR) in NPC cells. Moreover, α-MMC induced apoptosis in NPC cells in a dose- and time-dependent manner. It initiated mitochondrial- and death receptor-mediated apoptotic signaling in CNE2 cells, but there was hardly any effect on HONE1 cells. In addition, α-MMC brought about G0/G1 phase cell cycle arrest in CNE2 cells and S phase arrest in HONE1 cells. Collectively, α-MMC preferentially exhibited inhibitory effect on normoxic and hypoxic NPC cells partly by blocking survival signaling (e.g. HIF1α, VEGF and UPR), and triggering apoptotic pathways mediated by mitochondria or death receptor. These observations indicate the potential utility of α-MMC for prophylaxis and therapy of NPC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5937121 | PMC |
http://dx.doi.org/10.1016/j.bcp.2014.03.004 | DOI Listing |
Plant Cell
December 2024
Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA.
Oxygen prevents hydrogen production in Chlamydomonas (Chlamydomonas reinhardtii), in part by inhibiting the transcription of hydrogenase genes. We developed a screen for mutants showing constitutive accumulation of iron hydrogenase 1 (HYDA1) transcripts in normoxia. A reporter gene required for ciliary motility placed under the control of the HYDA1 promoter conferred motility only in hypoxia.
View Article and Find Full Text PDFHistochem Cell Biol
January 2025
Departamento de Diagnóstico en Patología y Medicina Oral, Facultad de Odontología, Universidad de La República, General Las Heras 1925, Montevideo, Uruguay.
The tumor microenvironment is an altered milieu that imposes multiple selective pressures leading to the survival and dissemination of aggressive and fit tumor cell subpopulations. How pre-tumoral and tumoral cells respond to changes in their microenvironment will determine the subsequent evolution of the tumor. In this study, we have subjected pre-tumoral and tumoral cells to coverslip-induced hypoxia, which recapitulates the intracellular hypoxia and extracellular acidification characteristic of the early tumor microenvironment, and we have used a combination of quantitative phase microscopy and epifluorescence to analyze diverse cellular responses to this altered environment.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Celvia CC AS, Tartu, Estonia.
Background: Endometriosis is characterized by the ectopic growth of endometrial-like cells, causing chronic pelvic pain, adhesions and impaired fertility in women of reproductive age. Usually, these lesions grow in the peritoneal cavity in a hypoxic environment. Hypoxia is known to affect gene expression and protein kinase (PK) activity.
View Article and Find Full Text PDFBrain Commun
December 2024
San Diego Biomedical Research Institute, San Diego, CA 92121, USA.
Hypoxia triggers blood-brain barrier disruption and a strong microglial activation response around leaky cerebral blood vessels. These events are greatly amplified in aged mice which is translationally relevant because aged patients are far more likely to suffer hypoxic events from heart or lung disease, and because of the pathogenic role of blood-brain barrier breakdown in vascular dementia. Importantly, it is currently unclear if disrupted cerebral blood vessels spontaneously repair and if they do, whether surrounding microglia deactivates.
View Article and Find Full Text PDFFront Genet
December 2024
Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China.
Introduction: Hypoxia responses are critical for myriad physiological and pathological processes, such as development, tissue repair, would healing, and tumorigenesis. microRNAs (miRNAs) are a class of small non-coding RNAs that exert their functions by inhibiting the expression of their target genes, and miR-210 is the miRNA universally and most conspicuously upregulated by hypoxia in mammalian systems. For its relationship to hypoxia, miR-210 has been studied extensively, yet no consensus exists on the roles and mechanisms of miR-210 in human physiological processes or diseases, and we know little about genuine miR-210 target genes in humans.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!