Many studies have shown that persistent infections of bacteria promote carcinogenesis and metastasis. Infectious agents and their products can modulate cancer progression through the induction of host inflammatory and immune responses. The presence of circulating tumor cells (CTCs) is considered as an important indicator in the metastatic cascade. We unintentionally produced a monoclonal antibody (MAb) CA27 against the mycoplasmal p37 protein in mycoplasma-infected cancer cells during the searching process of novel surface markers of CTCs. Mycoplasma-infected cells were enriched by CA27-conjugated magnetic beads in the peripheral blood mononuclear cells in patients with hepatocellular carcinoma (HCC) and analyzed by confocal microscopy with anti-CD45 and CA27 antibodies. CD45-negative and CA27-positive cells were readily detected in three out of seven patients (range 12-30/8.5 ml blood), indicating that they are mycoplasma-infected circulating epithelial cells. CA27-positive cells had larger size than CD45-positive hematological lineage cells, high nuclear to cytoplasmic ratios and irregular nuclear morphology, which identified them as CTCs. The results show for the first time the existence of mycoplasma-infected CTCs in patients with HCC and suggest a possible correlation between mycoplasma infection and the development of cancer metastasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2014.03.024 | DOI Listing |
Biomaterials
January 2025
Department of Pharmacy of Puning People's Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangdong, 510632, China. Electronic address:
Developing translational nanoradiosensitizers with multiple activities in sensitizing tumor cells and re-shaping tumor immunosuppressive microenvironments are urgently desired for addressing the poor therapeutic efficacy of radiotherapy in clinic. Inspired by the anaerobic and immunoagonist properties of the probiotic (bifidobacterium longum, BL), herein, a biomimetic Selenium nanoradiosensitizer in situ-formed on the surface of the probiotic (BL@SeNPs) is developed in a facile method to potentiate radiotherapy. BL@SeNPs selectively target to hypoxia regions of tumors and then anchor on the surface of tumor cells to inhibit its proliferation.
View Article and Find Full Text PDFPsychoneuroendocrinology
January 2025
Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium. Electronic address:
Telomere length (TL) is considered a biomarker of aging, and short TL in leukocytes is related to age and stress-related health problems. Cumulative lifetime stress exposure has also been associated with shorter TL and age-related health problems, but the mechanisms are not well understood. We tested in 108 individuals whether shorter TL in leukocytes is observed in individuals with the GABRA6 TT genotype, which has been associated with dysregulation of hypothalamic-pituitary-adrenal axis activity (the main biological stress system) compared to the CC genotype.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
Complex coacervation is a form of liquid-liquid phase separation, whereby two types of macromolecules, usually bearing opposite net charges, self-assemble into dense microdroplets driven by weak molecular interactions. Peptide-based coacervates have recently emerged as promising carriers to deliver large macromolecules (nucleic acids, proteins and complex thereof) inside cells. Thus, it is essential to understand their assembly/disassembly mechanisms at the molecular level in order to tune the thermodynamics of coacervates formation and the kinetics of cargo release upon entering the cell.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA. Electronic address:
Hematopoietic stem cells (HSCs) generate blood and immune cells. Here, we present a protocol to differentiate human pluripotent stem cells (hPSCs) into hematopoietic progenitors that express the signature HSC transcription factors HLF, HOXA5, HOXA7, HOXA9, and HOXA10. hPSCs are dissociated, seeded, and then sequentially differentiated into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and hematopoietic progenitors through the sequential addition of defined, serum-free media.
View Article and Find Full Text PDFCell Rep
January 2025
Division of Cell Regulation, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Cell Engineering, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Laboratory for Stem Cell Therapy, Faculty of Medicine, Tsukuba University, Ibaraki, Japan. Electronic address:
Hematopoietic stem cells (HSCs) possess the capacity to regenerate the entire hematopoietic system. However, the precise HSC dynamics in the early post-transplantation phase remain an enigma. Clinically, the initial hematopoiesis in the post-transplantation period is critical, necessitating strategies to accelerate hematopoietic recovery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!