Rationale: Myocardial infarction (MI) causes an imbalance between matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases (TIMPs) and is associated with adverse left ventricular (LV) remodeling. A uniform reduction in TIMP-4 post-MI has been observed.
Objective: To examine post-MI remodeling with cardiac-restricted overexpression of TIMP-4, either through a transgenic or viral delivery approach.
Methods And Results: MI was induced in mice and then randomized to targeted injection of an adenoviral construct (10 μL; 8×10(9) plaque forming units/mL) encoding green fluorescent protein (GFP) and the full-length human TIMP-4 (Ad-GFP-TIMP4) or GFP. A transgenic construct with cardiac-restricted overexpression TIMP-4 (hTIMP-4exp) was used in a parallel set of studies. LV end-diastolic volume, an index of LV remodeling, increased by >60% from baseline at 5 days post-MI and by >100% at 21 days post-MI in the Ad-GFP only group. However, LV dilation was reduced by ≈50% in both the Ad-GFP-TIMP4 and hTIMP-4exp groups at these post-MI time points. LV ejection fraction was improved with either Ad-GFP-TIMP-4 or hTIMP-4exp. Fibrillar collagen expression and content were increased within the MI region with both TIMP-4 interventions, suggestive of matrix stabilization.
Conclusions: This study is the first to demonstrate that selective myocardial targeting for TIMP-4 induction through either a viral or transgenic approach favorably altered the course of adverse LV remodeling post-MI. Thus, localized induction of endogenous matrix metalloproteinase inhibitors, such as TIMP-4, holds promise as a means to interrupt the progression of post-MI remodeling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4040980 | PMC |
http://dx.doi.org/10.1161/CIRCRESAHA.114.303634 | DOI Listing |
Med Sci (Paris)
January 2025
Institut toulousain des maladies infectieuses et inflammatoires (INFINITy), Université de Toulouse, CNRS UMR5051, Inserm UMR1291, Université Paul Sabatier, Toulouse, France.
The direct application of cold plasmas at atmospheric pressure, corresponding to partially ionized gases, is an emerging technology with a number of potential biomedical applications, including the decontamination of surgical devices. A new derived and easier to implement method has recently been developed: the use of cold atmospheric plasma-activated media (PAM). Numerous preclinical studies and in vitro models indicates that PAM treatments facilitate wound healing by promoting keratinocytes and fibroblasts migration, stimulating angiogenesis, and inhibiting bacterial proliferation, all of which are essential for this vital process.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands.
Cell Death Dis
January 2025
Department of Pathology, Qilu Hospital and School of Basic Medical Sciences Shandong University, Jinan, Shandong, PR China.
Long noncoding RNAs (lncRNAs) are key regulators during gastric cancer (GC) development and may be viable treatment targets. In the present study, we showed that the expression of the long intergenic noncoding RNA 01016 (LINC01016) is significantly higher in GC tissues with lymph node metastasis (LNM) than those without LNM. LINC01016 overexpression predicts a poorer relapse-free survival (RFS) and overall survival (OS).
View Article and Find Full Text PDFBiochem Genet
January 2025
Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
Although DNA methyltransferase 1 (DNMT1) and RNA editor ADAR triplications exist in Down syndrome (DS), their specific roles remain unclear. DNMT methylates DNA, yielding S-adenosine homocysteine (SAH), subsequently converted to homocysteine (Hcy) and adenosine by S-adenosine homocysteine (Hcy) hydrolase (SAHH). ADAR converts adenosine to inosine and uric acid.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:
The glomerular filtration barrier (GFB) has a unique spatial structure, including porous capillary endothelial cells, glomerular basal membrane (GBM) and highly specialized podocytes. This special structure is essential for the hemofiltration process of nephrons. GBM is the central meshwork structure of GFB formed by the assembly and fusion of various extracellular matrix (ECM) macromolecules, such as laminins and collagens, which undergo isoform transformation and maturation that may require precise regulation by metalloproteinases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!