Breaking the Crowther limit: combining depth-sectioning and tilt tomography for high-resolution, wide-field 3D reconstructions.

Ultramicroscopy

School of Applied & Engineering Physics and Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA.

Published: May 2014

To date, high-resolution (<1 nm) imaging of extended objects in three-dimensions (3D) has not been possible. A restriction known as the Crowther criterion forces a tradeoff between object size and resolution for 3D reconstructions by tomography. Further, the sub-Angstrom resolution of aberration-corrected electron microscopes is accompanied by a greatly diminished depth of field, causing regions of larger specimens (>6 nm) to appear blurred or missing. Here we demonstrate a three-dimensional imaging method that overcomes both these limits by combining through-focal depth sectioning and traditional tilt-series tomography to reconstruct extended objects, with high-resolution, in all three dimensions. The large convergence angle in aberration corrected instruments now becomes a benefit and not a hindrance to higher quality reconstructions. A through-focal reconstruction over a 390 nm 3D carbon support containing over 100 dealloyed and nanoporous PtCu catalyst particles revealed with sub-nanometer detail the extensive and connected interior pore structure that is created by the dealloying instability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultramic.2014.01.013DOI Listing

Publication Analysis

Top Keywords

breaking crowther
4
crowther limit
4
limit combining
4
combining depth-sectioning
4
depth-sectioning tilt
4
tilt tomography
4
tomography high-resolution
4
high-resolution wide-field
4
wide-field reconstructions
4
reconstructions high-resolution
4

Similar Publications

Xylanase breaks xylan down to xylose, which is used in industries such as pulp and paper, food and feed, among others. The utilization of wastes for xylanase production is economical, hence this work aimed at producing xylanase through solid-state fermentation and characterizing the enzyme. Xylanase-producing strains of and GIO were inoculated separately in a 5 and 10 day solid fermentation study on maize straw, rice straw, sawdust, corn cob, sugarcane bagasse, conifer litters, alkaline-pretreated maize straw (APM) and combined alkaline and biological-pretreated maize straw, respectively.

View Article and Find Full Text PDF

Climate warming is releasing carbon from soils around the world, constituting a positive climate feedback. Warming is also causing species to expand their ranges into new ecosystems. Yet, in most ecosystems, whether range expanding species will amplify or buffer expected soil carbon loss is unknown.

View Article and Find Full Text PDF

DNA repair proteins are critical to the maintenance of genomic integrity. Specific types of genotoxic factors, including reactive oxygen species generated during normal cellular metabolism or as a result of exposure to exogenous oxidative agents, frequently leads to "ragged" single-strand DNA breaks. The latter exhibits abnormal free DNA ends containing either a 5'-hydroxyl or 3'-phosphate requiring correction by the dual function enzyme, polynucleotide kinase phosphatase (PNKP), before DNA polymerase and ligation reactions can occur to seal the break.

View Article and Find Full Text PDF

The strong links between (Human Leukocyte Antigen) HLA, infection and autoimmunity combine to implicate T-cells as primary triggers of autoimmune disease (AD). T-cell crossreactivity between microbially-derived peptides and self-peptides has been shown to break tolerance and trigger AD in experimental animal models. Detailed examination of the potential for T-cell crossreactivity to trigger human AD will require means of predicting which peptides might be recognised by autoimmune T-cell receptors (TCRs).

View Article and Find Full Text PDF

Optimised detection of mitochondrial DNA strand breaks.

Mitochondrion

May 2019

Dermatological Sciences, Institute of Cellular Medicine, The Medical School, Newcastle University, Newcastle NE24HH, UK. Electronic address:

Intrinsic and extrinsic factors that induce cellular oxidative stress damage tissue integrity and promote ageing, resulting in accumulative strand breaks to the mitochondrial DNA (mtDNA) genome. Limited repair mechanisms and close proximity to superoxide generation make mtDNA a prominent biomarker of oxidative damage. Using human DNA we describe an optimised long-range qPCR methodology that sensitively detects mtDNA strand breaks relative to a suite of short mitochondrial and nuclear DNA housekeeping amplicons, which control for any variation in mtDNA copy number.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!