A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dual-force aggregation of magnetic particles enhances label-free quantification of DNA at the sub-single cell level. | LitMetric

Dual-force aggregation of magnetic particles enhances label-free quantification of DNA at the sub-single cell level.

Anal Chim Acta

Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, VA 22904, USA; Department of Pathology, University of Virginia Health Science Center, Charlottesville, VA 22908, USA; Department of Mechanical Engineering, University of Virginia, Engineer's Way, Charlottesville, VA 22904, USA. Electronic address:

Published: March 2014

We recently reported the 'pinwheel effect' as the foundation for a DNA assay based on a DNA concentration-dependent aggregation of silica-coated magnetic beads in a rotating magnetic field (RMF). Using a rotating magnet that generated a 5 cm magnetic field that impinged on a circular array of 5mm microwells, aggregation was found to only be effective in a single well at the center of the field. As a result, when multiple samples needed to be analyzed, the single-plex (single well) analysis was tedious, time-consuming and labor-intensive, as each well needed to be exposed to the center of the RMF in a serial manner for consistent well-to-well aggregation. For more effective multiplexing (simultaneous aggregation in 12 wells), we used a circular array of microwells and incorporated 'agitation' as a second force that worked in concert with the RMF to provide effective multiplexed aggregation-based DNA quantitation. The dual-force aggregation (DFA) approach allows for effective simultaneous aggregation in multiple wells (12 demonstrated) of the multi-well microdevice, allowing for 12 samples to be interrogated for DNA content in 140 s, providing a ∼35-fold improvement in time compared to single-plex approach (80 min) and ∼4-fold improvement over conventional fluorospectrometric methods. Furthermore, the increased interaction between DNA and beads provided by DFA improved the limit of detection to 250 fg μL(-1). The correlation between the DFA results and those from a fluorospectrometer, demonstrate DFA as an inexpensive and rapid alternative to more conventional methods (fluorescent and spectrophotometric).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2014.01.052DOI Listing

Publication Analysis

Top Keywords

dual-force aggregation
8
magnetic field
8
circular array
8
aggregation effective
8
single well
8
simultaneous aggregation
8
dna
6
aggregation
6
magnetic
4
aggregation magnetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!