A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A condition-specific codon optimization approach for improved heterologous gene expression in Saccharomyces cerevisiae. | LitMetric

Background: Heterologous gene expression is an important tool for synthetic biology that enables metabolic engineering and the production of non-natural biologics in a variety of host organisms. The translational efficiency of heterologous genes can often be improved by optimizing synonymous codon usage to better match the host organism. However, traditional approaches for optimization neglect to take into account many factors known to influence synonymous codon distributions.

Results: Here we define an alternative approach for codon optimization that utilizes systems level information and codon context for the condition under which heterologous genes are being expressed. Furthermore, we utilize a probabilistic algorithm to generate multiple variants of a given gene. We demonstrate improved translational efficiency using this condition-specific codon optimization approach with two heterologous genes, the fluorescent protein-encoding eGFP and the catechol 1,2-dioxygenase gene CatA, expressed in S. cerevisiae. For the latter case, optimization for stationary phase production resulted in nearly 2.9-fold improvements over commercial gene optimization algorithms.

Conclusions: Codon optimization is now often a standard tool for protein expression, and while a variety of tools and approaches have been developed, they do not guarantee improved performance for all hosts of applications. Here, we suggest an alternative method for condition-specific codon optimization and demonstrate its utility in Saccharomyces cerevisiae as a proof of concept. However, this technique should be applicable to any organism for which gene expression data can be generated and is thus of potential interest for a variety of applications in metabolic and cellular engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4004289PMC
http://dx.doi.org/10.1186/1752-0509-8-33DOI Listing

Publication Analysis

Top Keywords

codon optimization
20
condition-specific codon
12
gene expression
12
heterologous genes
12
optimization
8
optimization approach
8
heterologous gene
8
saccharomyces cerevisiae
8
translational efficiency
8
synonymous codon
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!