The actin cytoskeleton is involved in plant defense responses; however, the role of the actin-depolymerizing factor (ADF) family, which regulates actin cytoskeletal dynamics, in plant disease resistance, is largely unknown. Here, we characterized a wheat (Triticum aestivum) ADF gene, TaADF7, with three copies located on chromosomes 1A, 1B, and 1D, respectively. All three copies encoded the same protein, although there were variations in 19 nucleotide positions in the open reading frame. Transcriptional expression of the three TaADF7 copies were all sharply elevated in response to avirulent Puccinia striiformis f. sp. tritici (Pst) infection, with similar expression patterns. TaADF7 regulated the actin cytoskeletal dynamics by targeting the actin cytoskeleton to execute actin binding/severing activities. When the TaADF7 copies were all silenced by virus-induced gene silencing, the growth of Pst hypha increased and sporadic urediniospores were observed, as compared with control plants, upon inoculation with avirulent Pst. In addition, the accumulation of reactive oxygen species (ROS) and the hypersensitive response (HR) were greatly weakened, whereas cytochalasin B partially rescued the HR in TaADF7 knock-down plants. Together, these findings suggest that TaADF7 is likely to contribute to wheat resistance against Pst infection by modulating the actin cytoskeletal dynamics to influence ROS accumulation and the HR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.12457 | DOI Listing |
Front Cell Dev Biol
December 2024
Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
Introduction: NF-κB plays a pivotal role in the progression of cancers, including myosarcomas such as fibrosarcoma. Plants possess considerable potential for the provision of chemotherapeutic effects against cancer. The present study assessed, among others, the cytotoxicity, migration capacity and DNA damage induced by several natural compounds (berberine, curcumin, biochanin A, cucurbitacin E (CurE) and phenethyl caffeic acid (CAPE)) in cancer cells (WEHI-164) and normal muscle cells (L6).
View Article and Find Full Text PDFCytoskeleton (Hoboken)
January 2025
Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, Bordeaux, France.
Single molecule tracking and super-resolution microscopy of integrin adhesion proteins and actin in developing Drosophila muscle attachment sites reveals that nanotopography triggered by Arp2/3-dependent actin protrusions promotes stable adhesion formation. The nanodomains formed during this process confine the diffusion of integrins and promote their immobilization. Spatial confinement is also applied to the motion of actin filaments, resulting in enhanced mechanical connection with the integrin adhesion complex.
View Article and Find Full Text PDFAnticancer Agents Med Chem
January 2025
Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
Background: Cucurbitacin E glucoside (CEG), a prominent constituent of Cucurbitaceae plants, exhibits notable effects on cancer cell behavior, including inhibition of invasion and migration, achieved through mechanisms such as apoptosis induction, autophagy, cell cycle arrest, and disruption of the actin cytoskeleton.
Objective: Melanoma, the fastest-growing malignancy among young individuals in the United States and the predominant cancer among young adults aged 25 to 29, poses a significant health threat. This study aims to elucidate the apoptotic mechanism of CEG against the melanoma cancer cell line (A375).
Toxicol Lett
January 2025
Department of Public Health,International College,Krirk University, Bangkok 10220, Thailand; School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China. Electronic address:
Rare earth is used extensively around the world, and rare earth particles cause a respiratory disease in workers termed rare earth pneumoconiosis(REP) that have attracted considerable attention. However, the mechanisms of REP, characterized by diffuse pulmonary fibrosis, are elusive. REP progression involves various signaling pathway networks comprising numerous cell types and cytokines.
View Article and Find Full Text PDFJ Cell Biol
March 2025
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
Many cancer cells exhibit increased amounts of paucimannose glycans, which are truncated N-glycan structures rarely found in mammals. Paucimannosidic proteins are proposedly generated within lysosomes and exposed on the cell surface through a yet uncertain mechanism. In this study, we revealed that paucimannosidic proteins are produced by lysosomal glycosidases and secreted via lysosomal exocytosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!