Improvement of spin transfer torque in asymmetric graphene devices.

ACS Nano

School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, United States.

Published: April 2014

A graphene lateral spin valve structure with asymmetric contacts is presented for the first time, with enhancement of spin angular momentum absorption in its receiving magnet. The asymmetric device with tunneling barrier only at the injector magnet shows a comparable spin valve signal but lower electrical noises compared to the device with two tunneling barriers. We also report experimental measurements of spin transfer torque. Assisted by an external magnetic field of 2.5 mT, spin diffusion current-induced magnetization reversal occurs at a nonlocal charge current density of 33 mA/μm(2), smaller than that needed in devices with two tunneling barriers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn500533bDOI Listing

Publication Analysis

Top Keywords

spin transfer
8
transfer torque
8
spin valve
8
device tunneling
8
tunneling barriers
8
spin
5
improvement spin
4
torque asymmetric
4
asymmetric graphene
4
graphene devices
4

Similar Publications

Modulating Electronic Spin State of Perovskite Fluoride by Ni─F─Mn Bond Activating the Dynamic Site of Oxygen Reduction Reaction.

Small

January 2025

Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.

Establishing the relationship between catalytic performance and material structure is crucial for developing design principles for highly active catalysts. Herein, a type of perovskite fluoride, NHMnF, which owns strong-field coordination including fluorine and ammonia, is in situ grown on carbon nanotubes (CNTs) and used as a model structure to study and improve the intrinsic catalytic activity through heteroatom doping strategies. This approach optimizes spin-dependent orbital interactions to alter the charge transfer between the catalyst and reactants.

View Article and Find Full Text PDF

Densely populated macrocyclic dicobalt sites in ladder polymers for low-overpotential oxygen reduction catalysis.

Nat Commun

January 2025

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065 Chengdu, China.

Dual-atom catalysts featuring synergetic dinuclear active sites, have the potential of breaking the linear scaling relationship of the well-established single-atom catalysts for oxygen reduction reaction; however, the design of dual-atom catalysts with rationalized local microenvironment for high activity and selectivity remains a great challenge. Here we design a bisalphen ladder polymer with well-defined densely populated binuclear cobalt sites on Ketjenblack substrates. The strong electron coupling effect between the fully-conjugated ladder structure and carbon substrates enhances the electron transfer between the cobalt center and oxygen intermediates, inducing the low-to-high spin transition for the 3d electron of Co(II).

View Article and Find Full Text PDF

Hyphenation of 2D NMR With Hydrogenative PHIP.

Magn Reson Chem

January 2025

Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.

Parahydrogen induced polarisation (PHIP) is often used to enhance the sensitivity of NMR, with the purpose of extending the applicability of the technique. Nuclear spin hyperpolarisation obtained via PHIP is generally localised on the protons derived from the addition of para-enriched hydrogen to an unsaturated substrate. This limitation has been previously addressed by pulse schemes that can spread this hyperpolarised magnetisation through the entire network of J-coupled protons in the product molecule.

View Article and Find Full Text PDF

Herein, first, MIL-125 samples were synthesized via a hydrothermal method. Then, Ag species were doping on the surface of MIL-125 samples via the photolysis of silver nitrate. Finally, the Z-scheme MIL-125/Ag/BiOBr composite was synthesized via a directed liquid assembly method.

View Article and Find Full Text PDF

Objectives: Brain metastases are the most common intracranial malignancy in adults, and their detection is crucial for treatment planning. Post-contrast 3D T1 gradient-recalled echo (GRE) sequences are commonly used for this purpose, but contrast-enhanced 3D T1 turbo spin-echo (TSE) sequences with motion-sensitized driven-equilibrium (MSDE) technique ("black blood") may offer improved detection. This study aimed to compare the effectiveness of contrast-enhanced 3D black blood sequences to standard 3D T1 GRE sequences in detecting brain metastases on a 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!