In mammary tumors, intravital imaging techniques have uncovered an essential role for macrophages during tumor cell invasion and metastasis mediated by an epidermal growth factor (EGF) / colony stimulating factor-1 (CSF-1) paracrine loop. It was previously demonstrated that mammary tumors in mice derived from rat carcinoma cells (MTLn3) exhibited high velocity migration on extracellular matrix (ECM) fibers. These cells form paracrine loop-dependent linear assemblies of alternating host macrophages and tumor cells known as "streams." Here, we confirm by intravital imaging that similar streams form in close association with ECM fibers in a highly metastatic patient-derived orthotopic mammary tumor (TN1). To understand the in vivo cell motility behaviors observed in streams, an in vitro model of fibrillar tumor ECM utilizing adhesive 1D micropatterned substrates was developed. MTLn3 cells on 1D fibronectin or type I collagen substrates migrated with higher velocity than on 2D substrates and displayed enhanced lamellipodial protrusion and increased motility upon local interaction and pairing with bone marrow-derived macrophages (BMMs). Inhibitors of EGF or CSF-1 signaling disrupted this interaction and reduced tumor cell velocity and protrusion, validating the requirement for an intact paracrine loop. Both TN1 and MTLn3 cells in the presence of BMMs were capable of co-assembling into linear arrays of alternating tumor cells and BMMs that resembled streams in vivo, suggesting the stream assembly is cell autonomous and can be reconstituted on 1D substrates. Our results validate the use of 1D micropatterned substrates as a simple and defined approach to study fibrillar ECM-dependent cell pairing, migration and relay chemotaxis as a complementary tool to intravital imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3908597PMC
http://dx.doi.org/10.4161/intv.22054DOI Listing

Publication Analysis

Top Keywords

intravital imaging
12
cell pairing
8
mammary tumors
8
macrophages tumor
8
tumor cell
8
paracrine loop
8
ecm fibers
8
tumor cells
8
micropatterned substrates
8
mtln3 cells
8

Similar Publications

Developing Topics.

Alzheimers Dement

December 2024

University of Kentucky College of Medicine, Sanders-Brown Center on Aging, Lexington, KY, USA.

Background: Vascular pathology profoundly comorbid with AD pathology could worsen disease progression and reduce treatment efficacy. Knowledge of small vessels and cerebrovascular function in AD mouse models is limited. Investigating vascular related aspects for preclinical AD studies is essential for biomarker development and treatment trials.

View Article and Find Full Text PDF

Boosting skin cancer diagnosis accuracy with ensemble approach.

Sci Rep

January 2025

School of Information and Electronic Engineering and Zhejiang Key Laboratory of Biomedical Intelligent Computing Technology, Zhejiang University of Science and Technology, No. 318, Hangzhou, Zhejiang, China.

Skin cancer is common and deadly, hence a correct diagnosis at an early age is essential. Effective therapy depends on precise classification of the several skin cancer forms, each with special traits. Because dermoscopy and other sophisticated imaging methods produce detailed lesion images, early detection has been enhanced.

View Article and Find Full Text PDF

In toto biological framework: Modeling interconnectedness during human development.

Dev Cell

January 2025

Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Graduate School of Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan; Human Biology Research Unit, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Divisions of Gastroenterology, Hepatology & Nutrition, and Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA. Electronic address:

Recent advancements in pluripotent stem cell and synthetic tissue technology have brought significant breakthroughs in studying early embryonic development, particularly within the first trimester of development in humans. However, during fetal stage development, investigating further biological events represents a major challenge, partly due to the evolving complexity and continued interaction across multiple organ systems. To bridge this gap, we propose an "in toto" biological framework that leverages a triad of technologies: synthetic tissues, intravital microscopy, and computer vision to capture in vivo cellular morphodynamics, conceptualized as single-cell choreography.

View Article and Find Full Text PDF

Protein handling in kidney tubules.

Nat Rev Nephrol

January 2025

Institute of Anatomy, University of Zurich, Zurich, Switzerland.

The kidney proximal tubule reabsorbs and degrades filtered plasma proteins to reclaim valuable nutrients and maintain body homeostasis. Defects in this process result in proteinuria, one of the most frequently used biomarkers of kidney disease. Filtered proteins enter proximal tubules via receptor-mediated endocytosis and are processed within a highly developed apical endo-lysosomal system (ELS).

View Article and Find Full Text PDF

The physiological and clinical importance of motile cilia in reproduction is well recognized, however, the specific role they play in transport through the oviduct and how ciliopathies lead to subfertility and infertility is still unclear. The contribution of cilia beating, fluid flow, and smooth muscle contraction to overall progressive transport within the oviduct remains under debate. Therefore, we investigated the role of cilia in the oviduct transport of preimplantation eggs and embryos using a combination of genetic and advanced imaging approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!