A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of angular gain transformations between movement and visual feedback on coordination performance in unimanual circling. | LitMetric

Tool actions are characterized by a transformation (of spatio-temporal and/or force-related characteristics) between movements and their resulting consequences in the environment. This transformation has to be taken into account, when planning and executing movements and its existence may affect performance. In the present study we investigated how angular gain transformations between movement and visual feedback during circling movements affect coordination performance. Participants coordinated the visual feedback (feedback dot) with a continuously circling stimulus (stimulus dot) on a computer screen in order to produce mirror symmetric trajectories of them. The movement angle was multiplied by a gain factor (0.5-2; nine levels) before it was presented on the screen. Thus, the angular gain transformations changed the spatio-temporal relationship between the movement and its feedback in visual space, and resulted in a non-constant mapping of movement to feedback positions. Coordination performance was best with gain = 1. With high gains the feedback dot was in lead of the stimulus dot, with small gains it lagged behind. Anchoring (reduced movement variability) occurred when the two trajectories were close to each other. Awareness of the transformation depended on the deviation of the gain from 1. In conclusion, the size of an angular gain transformation as well as its mere presence influence performance in a situation in which the mapping of movement positions to visual feedback positions is not constant. When designing machines or tools that involve transformations between movements and their external consequences, one should be aware that the mere presence of angular gains may result in performance decrements and that there can be flaws in the representation of the transformation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3942634PMC
http://dx.doi.org/10.3389/fpsyg.2014.00152DOI Listing

Publication Analysis

Top Keywords

angular gain
16
visual feedback
16
gain transformations
12
coordination performance
12
transformations movement
8
movement visual
8
feedback
8
feedback dot
8
stimulus dot
8
movement feedback
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!