Glucocorticoid-induced TNFR (Gitr) and Ox40, two members of the TNFR superfamily, play important roles in regulating activities of effector and regulatory T cells (Treg). Their gene expression is induced by T cell activation and further upregulated in Foxp3+ Treg. Although the role of Foxp3 as a transcriptional repressor in Treg is well established, the mechanisms underlying Foxp3-mediated transcriptional upregulation remain poorly understood. This transcription factor seems to upregulate expression not only of Gitr and Ox40, but also other genes, including Ctla4, Il35, Cd25, all critical to Treg function. To investigate how Foxp3 achieves such upregulation, we analyzed its activity on Gitr and Ox40 genes located within a 15.1-kb region. We identified an enhancer located downstream of the Gitr gene, and both Gitr and Ox40 promoter activities were shown to be upregulated by the NF-κB-mediated enhancer activity. We also show, using the Gitr promoter, that the enhancer activity was further upregulated in conjunction with Foxp3. Foxp3 appears to stabilize NF-κB p50 binding by anchoring it to the enhancer, thereby enabling local accumulation of transcriptional complexes containing other members of the NF-κB and IκB families. These findings may explain how Foxp3 can activate expression of certain genes while suppressing others.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3988904PMC
http://dx.doi.org/10.4049/jimmunol.1302174DOI Listing

Publication Analysis

Top Keywords

gitr ox40
16
gene expression
8
expression gitr
8
ox40 genes
8
activity gitr
8
enhancer activity
8
gitr
7
foxp3
6
enhancer
5
gitr locus
4

Similar Publications

Bivalent OX40 Aptamer and CpG as Dual Agonists for Cancer Immunotherapy.

ACS Appl Mater Interfaces

January 2025

College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.

Cancer immunotherapy has revolutionized cancer treatment by harnessing the body's immune system to recognize and attack tumors. Over the past 25 years, the use of blocking antibodies has fundamentally transformed the landscape of cancer therapy. However, despite extensive research, agonist antibodies targeting costimulatory receptors such as ICOS, GITR, OX40, CD27, and 4-1BB have consistently underperformed in clinical trials over the past 15 years, failing to meet the anticipated success.

View Article and Find Full Text PDF

Anti-correlation of KLRG1 and PD-1 expression in human tumor CD8 T cells.

Oncotarget

January 2025

Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.

Recently, combination checkpoint therapy of cancer has been recognized as producing additive as opposed to synergistic benefit due in part to positively correlated effects. The potential for uncorrelated or negatively correlated therapies to produce true synergistic benefits has been noted. Whereas the inhibitory receptors PD-1, CTLA-4, TIM-3, LAG-3, and TIGIT have been collectively characterized as exhaustion receptors, another inhibitory receptor KLRG1 was historically characterized as a senescent receptor and received relatively little attention as a potential checkpoint inhibitor target.

View Article and Find Full Text PDF

Tertiary lymphoid structures (TLSs) are de novo ectopic lymphoid aggregates that regulate immunity in chronically inflamed tissues, including tumours. Although TLSs form due to inflammation-triggered activation of the lymphotoxin (LT)-LTβ receptor (LTβR) pathway, the inflammatory signals and cells that induce TLSs remain incompletely identified. Here we show that interleukin-33 (IL-33), the alarmin released by inflamed tissues, induces TLSs.

View Article and Find Full Text PDF

Prosurvival tumor necrosis factor receptor (TNFR) superfamily (TNFRSF) members on T cells, including 4-1BB, CD27, GITR, and OX40, support T cell accumulation during clonal expansion, contributing to T cell memory. During viral infection, tumor necrosis factor superfamily (TNFSF) members on inflammatory monocyte-derived antigen-presenting cells (APCs) provide a postpriming signal (signal 4) for T cell accumulation, particularly in the tissues. Patients with loss-of-function mutations in TNFR/TNFSF members reveal a critical role for 4-1BB and CD27 in CD8 T cell control of Epstein-Barr virus and other childhood infections and of OX40 in CD4 T cell responses.

View Article and Find Full Text PDF

5-Aza-2'-deoxycytidin (Decitabine) increases cancer-testis antigen expression in head and neck squamous cell carcinoma and modifies immune checkpoint expression, especially in CD39-positive CD8 and CD4 T cells.

Neoplasia

January 2025

Head and Neck Cancer Center of the Comprehensive Cancer Center, Department of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Germany; Ulm University Medical Faculty, Core Facility Immune Monitoring, Ulm, Germany. Electronic address:

Failure of immunotherapy in head and neck squamous cell carcinoma (HNSCC) patients represents an unmet need to augment leverage of adaptive immunity. Immunogenic cancer-testis antigen (CTA) expression as well as lymphocyte differentiation and function are regulated by DNA methylation. Therefore, epigenetic therapy via inhibition of DNA-Methyltransferases by 5-Aza-2'-deoxycytidine (DAC) serves a promising adjuvant in immunotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!