Effect of aromatase inhibition on functional gene modules in estrogen receptor-positive breast cancer and their relationship with antiproliferative response.

Clin Cancer Res

Authors' Affiliations: Breakthrough Breast Cancer Research Centre, Institute of Cancer Research; Academic Department of Biochemistry, Royal Marsden Foundation Trust, London, United Kingdom; and Department of Biochemistry, University of Otago, Dunedin, New Zealand.

Published: May 2014

Purpose: To investigate potential associations between gene modules representing key biologic processes and response to aromatase inhibitors (AI) in estrogen receptor-positive (ER(+)) breast cancer.

Patients And Methods: Paired gene expression and Ki67 protein expression were available from 69 postmenopausal women with ER(+) early breast cancer, at baseline and 2 weeks post-anastrozole treatment, in the presurgical setting. Functional gene modules (n = 26) were retrieved from published studies and their module scores were computed before and after elimination of proliferation-associated genes (PAG). Ki67 and module scores were assessed at baseline and 2 weeks post-anastrozole. Unsupervised clustering was used to assess associations between modules and Ki67.

Results: Proliferation-based modules were highly correlated with Ki67 expression both pretreatment and on-treatment. At baseline with and without PAGs, Ki67 expression was significantly inversely correlated with ERG, ESR1.2, SET, and PIK3CA modules. Modules measuring estrogen signaling strongly predicted antiproliferative response to therapy with and without PAGs. Baseline expression of insulin-like growth factor-1 (IGF-I) module predicted a poor change in Ki67-implicating genes within the module as involved in de novo resistance to AIs. High expression of Immune.2.STAT1 module pretreatment predicted poor antiproliferative response to therapy. A significant association between estrogen-regulated genes modules (ESR1, ESR1-2, SET, and ERG) was evident post AI.

Conclusions: Multiple processes and pathways are affected by AI treatment in ER(+) breast cancer. Modules closely associated with ESR1 expression were predictive of good antiproliferative response to AIs, but modules representing immune activity and IGF-I/MAPK were predictive of poor Ki67 response, supporting their therapeutic targeting in combination with AIs.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-13-2602DOI Listing

Publication Analysis

Top Keywords

antiproliferative response
16
gene modules
12
breast cancer
12
modules
10
functional gene
8
estrogen receptor-positive
8
modules representing
8
er+ breast
8
baseline weeks
8
weeks post-anastrozole
8

Similar Publications

Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with limited treatment options and a poor prognosis. The critical role of epigenetic alterations such as changes in DNA methylation, histones modifications, and chromatin remodeling, in pancreatic tumors progression is becoming increasingly recognized. Moreover, in PDAC these aberrant epigenetic mechanisms can also limit therapy efficacy.

View Article and Find Full Text PDF

Multiple next-generation molecules targeting estrogen receptor α (ERα) are being investigated in breast cancer clinical trials, encompassing thousands of women globally. Development of these molecules was partly motivated by the discovery of resistance-associated mutations in ESR1 (encodes ERα). Here, we studied the impact of ERα antagonist/degraders against Esr1 mutations expressed in mouse mammary glands.

View Article and Find Full Text PDF

The active metabolite of vitamin D3, calcitriol (1,25D), is widely recognised for its direct anti-proliferative and pro-differentiation effects. However, 1,25D is calcaemic, which restricts its clinical use for cancer treatment. Non-calcaemic agonists of the vitamin D receptor (VDR) could be better candidates for cancer treatment.

View Article and Find Full Text PDF

Background: Adenoid cystic carcinoma (ACC) is a rare glandular malignancy, commonly originating in salivary glands of the head and neck. Given its protracted growth, ACC is usually diagnosed in advanced stage. Treatment of ACC is limited to surgery and/or adjuvant radiotherapy, which often fails to prevent disease recurrence, and no FDA-approved targeted therapies are currently available.

View Article and Find Full Text PDF

Light induced release of cisplatin from Pt(IV) prodrugs is a promising tool for precise spatiotemporal control over the antiproliferative activity of Pt-based chemotherapeutic drugs. A combination of light-controlled chemotherapy (PACT) and photodynamic therapy (PDT) in one molecule has the potential to overcome crucial drawbacks of both Pt-based chemotherapy and PDT via a synergetic effect. Herein we report green-light-activated Pt(IV) prodrug GreenPt with BODIPY-based photosentitizer in the axial position with an incredible high light response and singlet oxygen generation ability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!