PI3K pathway activation in high-grade ductal carcinoma in situ--implications for progression to invasive breast carcinoma.

Clin Cancer Res

Authors' Affiliations: Breast Service, Department of Surgery; Departments of Pathology; and Medicine; and the Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.

Published: May 2014

Purpose: To assess the prevalence of phosphoinositide 3-kinase (PI3K) pathway alterations in pure high-grade ductal carcinoma in situ (DCIS) and DCIS associated with invasive breast cancer (IBC), and to determine whether DCIS and adjacent IBCs harbor distinct PI3K pathway aberrations.

Experimental Design: Eighty-nine cases of pure high-grade DCIS and 119 cases of high-grade DCIS associated with IBC were characterized according to estrogen receptor (ER) and HER2 status, subjected to immunohistochemical analysis of PTEN, INPP4B, phosphorylated (p)AKT and pS6 expression, and to microdissection followed by Sequenom genotyping of PIK3CA and AKT1 hotspot mutations.

Results: Alterations affecting the PI3K pathway were found in a subset of pure DCIS and DCIS adjacent to IBC. A subtype-matched comparison of pure DCIS and DCIS adjacent to IBC revealed that PIK3CA hotspot mutations and pAKT expression were significantly more prevalent in ER-positive/HER2-negative DCIS adjacent to IBC (P values, 0.005 and 0.043, respectively), and that in ER-negative/HER2-positive cases INPP4B loss of expression was more frequently observed in pure DCIS (a P value of 0.013). No differences in the parameters analyzed were observed in a pairwise comparison of the in situ and invasive components of cases of DCIS and adjacent IBC. Analysis of the PIK3CA-mutant allelic frequencies in DCIS and synchronous IBC revealed cases in which PIK3CA mutations were either restricted to the DCIS or to the invasive components.

Conclusion: Molecular aberrations affecting the PI3K pathway may play a role in the progression from high-grade DCIS to IBC in a subset of cases (e.g., a subgroup of ER-positive/HER2-negative lesions).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015460PMC
http://dx.doi.org/10.1158/1078-0432.CCR-13-2267DOI Listing

Publication Analysis

Top Keywords

pi3k pathway
20
dcis adjacent
20
adjacent ibc
16
dcis
15
dcis dcis
12
high-grade dcis
12
pure dcis
12
high-grade ductal
8
ductal carcinoma
8
invasive breast
8

Similar Publications

Tacrolimus (TAC) is an immunosuppressant widely utilized in organ transplantation. One of its primary adverse effects is glucose metabolism disorder, which significantly increases the risk of diabetes. Investigating the molecular mechanisms underlying TAC-induced diabetes is essential for developing effective prevention and treatment strategies for these adverse effects.

View Article and Find Full Text PDF

Silymarin: a promising modulator of apoptosis and survival signaling in cancer.

Discov Oncol

January 2025

Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India.

Cancer, one of the deadliest diseases, has remained the epicenter of biological research for more than seven decades. Yet all the efforts for a perfect therapeutic cure come with certain limitations. The use of medicinal plants and their phytochemicals as therapeutics has received much attention in recent years.

View Article and Find Full Text PDF

The alleviation by wheat and oat dietary fiber alone or combined of T2DM symptoms in / mice.

Food Funct

January 2025

Academy of National Food and Strategic Reserves Administration, Beijing, China.

The effects of wheat and oat dietary fiber (DF) alone or combined on T2DM remain unclear. In this research, / diabetic mice were fed with diets containing 10% insoluble wheat dietary fiber (WDF), 10% insoluble oat dietary fiber (ODF), and 10% WODF (mixture of WDF and ODF, WDF : ODF = 1 : 1) for 8 weeks. The results showed that WDF, ODF, and WODF all reduced the body weight and fasting blood glucose (FBG) and improved oral glucose tolerance in / mice.

View Article and Find Full Text PDF

LINC01305 and LAD1 Co-Regulate CTTN and N-WASP Phosphorylation, Mediating Cytoskeletal Reorganization to Promote ESCC Metastasis.

Mol Carcinog

January 2025

Institute of Tissue Engineering and Stem Cells, Beijing Anzhen Nanchong Hospital of Capital Medical University, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China.

Esophageal squamous cell carcinoma (ESCC) is prone to metastasis and is a leading cause of mortality. The cytoskeleton is closely related to cell morphology and movement; however, little research has been conducted on ESCC metastasis. In this study, we found that the anchoring filament protein ladinin 1 (LAD1) specifically binds to LINC01305 for co-regulating the level of modulating cortactin proteins (CTTN) and neuronal Wiskott-Aldrich syndrome protein (N-WASP) phosphorylation, which mediates cytoskeletal reorganization and affects the metastasis of ESCC cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!