Switching the conductance of a molecular junction using a proton transfer reaction.

J Mol Model

Institute of Theoretical Physics and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 7/B2, 91058, Erlangen, Germany.

Published: April 2014

A novel mechanism for switching a molecular junction based on a proton transfer reaction triggered by an external electrostatic field is proposed. As a specific example to demonstrate the feasibility of the mechanism, the tautomers [2,5-(4-hydroxypyridine)] and {2,5-[4(1H)-pyridone]} are considered. Employing a combination of first-principles electronic structure calculations and Landauer transport theory, we show that both tautomers exhibit very different conductance properties and realize the "on" and "off" states of a molecular switch. Moreover, we provide a proof of principle that both forms can be reversibly converted into each other using an external electrostatic field.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-014-2163-2DOI Listing

Publication Analysis

Top Keywords

molecular junction
8
proton transfer
8
transfer reaction
8
external electrostatic
8
electrostatic field
8
switching conductance
4
conductance molecular
4
junction proton
4
reaction novel
4
novel mechanism
4

Similar Publications

The human genome contains numerous repetitive nucleotide sequences that display a propensity to fold into non-canonical DNA structures including G-quadruplexes (G4s). G4s have both positive and negative impacts on various aspects of nucleic acid metabolism including DNA replication, DNA repair and RNA transcription. Poly (ADP-ribose) polymerase (PARP1), an important anticancer drug target, has been recently shown to bind a subset of G4s, and to undergo auto-PARylation.

View Article and Find Full Text PDF

We provide important novel insights into skeletal transformations of fullerene by reporting new cases of cage shrinkage in the most abundant C60 fullerene via a C2 loss. High-temperature (400-500 oC) chlorination of IPR C60 with SbCl5 or SbCl5/SbCl3 mixtures predominantly gives non-IPR C60Cln compounds via Stone-Wales rearrangements, but the present study further reveals non-classical C58Cln chlorofullerenes as by-products. The new C58(NC1)Cl20 and C58(NC1)Cl24 chlorides have been isolated by air-free HPLC and structurally characterized by X-ray crystallography.

View Article and Find Full Text PDF

(-) - (11R, 12S)-mefloquine ameliorates neuropathic pain by modulating Cx36-ER stress interaction in the pain-related central nervous system in rats.

Life Sci

January 2025

Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China; Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China. Electronic address:

Aims: To explore the specific molecular and cellular mechanisms of (-) - Mefloquine (one of Mefloquine's enantiomers) in modulating the interaction between Connexin 36 (Cx36) and endoplasmic reticulum stress (ERS) both in rats with CCI-induced neuropathic pain and in tunicamycin-induced ERS cells.

Materials And Methods: The authors conducted chronic constriction injury (CCI) in rats to induce neuropathic pain and established the ERS model in SH-SY5Y cells to mimic the stress state after neuropathic pain. The study employed behavioral tests and various molecular biology techniques, including Western blot analysis, cell transfection, and co-immunoprecipitation (co-IP).

View Article and Find Full Text PDF

It was imperative to discover and utilize high-efficiency, non-toxic substances for the prevention and management of type 2 diabetes mellitus (T2DM) and its associated complications, given the escalating prevalence and significant global health burden. In the present study, the acetylated Ganoderma applanatum polysaccharide (A-GAP) was successfully obtained and characterized, demonstrating excellent efficacy in ameliorating organ damage induced by T2DM through targeted modulation of the gut-liver axis. The physiological and molecular biological findings indicated that A-GAP may modulate the Nrf2/Keap1-TLR4/NFκB-Bax/Bcl-2 signaling pathway network, thereby mitigating oxidative stress and the subsequent inflammatory response, ultimately alleviating the inhibitory effects of IRS and insulin resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!