This paper describes a microproteomic workflow that is useful for simultaneously identifying and quantifying proteins from a minimal number of morphotypically heterogeneous cultured adherent cells. The analytical strategy makes use of laser capture microdissection, an effective means of harvesting pure cell populations, and label-free mass spectrometry. We optimised the workflow with particular reference to cell fixation which is crucial for successful laser-based microdissection and also downstream molecular studies. In addition, we defined the minimum number of cells to be isolated and analysed for satisfactory proteome coverage. To set up this workflow, we choose human monocyte-derived macrophages spontaneously differentiated in vitro. These cells, under our culture conditions, show distinct morphotypes, reminiscent of the heterogeneity observed in tissues in various homeostatic and pathological states, e.g. atherosclerosis. This optimised workflow may provide new insights into biology and pathology of heterogeneous cell in culture, particularly when other cell selection approaches are not suitable.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-014-7724-9DOI Listing

Publication Analysis

Top Keywords

laser capture
8
capture microdissection
8
optimised workflow
8
workflow
5
cell
5
mass spectrometry-based
4
spectrometry-based workflow
4
workflow proteomic
4
proteomic analysis
4
analysis vitro
4

Similar Publications

Biomarkers.

Alzheimers Dement

December 2024

Adeptrix Corp, Beverly, MA, USA.

Background: The rapidly growing pipeline of target-specific Alzheimer's Disease (AD) therapeutic candidates requires accompanying tests that can identify patients likely to have a beneficial response. The growing importance of multiple pathologies in determining AD progression and treatment response underscores this need. Our work focuses on establishing analytical capability to expand detectable forms of major protein drug targets for AD: Tau, amyloid beta (Ab) and a-Synuclein (aS) proteoforms as potential personalized molecular signatures.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder worldwide and is characterized by clinical symptoms that include deficits in memory and cognition. There is an urgent need to better identify the neural networks that govern cognitive processes in humans and how they are impacted by AD pathology. The brainstem is a critical region that 'connects' the forebrain and the spinal cord and contains various nuclei involved in autonomic and complex functions (e.

View Article and Find Full Text PDF

Developing Topics.

Alzheimers Dement

December 2024

St. Jude Childeren's research hospital, Memphis, TN, USA.

Background: Alzheimer's disease (AD) is characterized by the accumulation of pathological amyloid protein deposits in the brain. Analyzing the proteomic composition amyloid plaques is essential for advancing biomedical research on Alzheimer's disease. Laser capture microdissection (LCM) is a technique that enables precise isolation and collection of specific cells or structures from tissue samples.

View Article and Find Full Text PDF

Anticounterfeiting technologies meet challenges in the Internet of Things era due to the rapidly growing volume of objects, their frequent connection with humans, and the accelerated advance of counterfeiting/cracking techniques. Here, we, inspired by biological fingerprints, present a simple anticounterfeiting system based on perovskite quantum dot (PQD) fingerprint physical unclonable function (FPUF) by cooperatively utilizing the spontaneous-phase separation of polymers and selective in situ synthesis PQDs as an entropy source. The FPUFs offer red, green, and blue full-color fingerprint identifiers and random three-dimensional (3D) morphology, which extends binary to multivalued encoding by tuning the perovskite and polymer components, enabling a high encoding capacity (about 10, far surpassing that of biometric fingerprints).

View Article and Find Full Text PDF

Computational microscopy with coherent diffractive imaging and ptychography.

Nature

January 2025

Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA, USA.

Microscopy and crystallography are two essential experimental methodologies for advancing modern science. They complement one another, with microscopy typically relying on lenses to image the local structures of samples, and crystallography using diffraction to determine the global atomic structure of crystals. Over the past two decades, computational microscopy, encompassing coherent diffractive imaging (CDI) and ptychography, has advanced rapidly, unifying microscopy and crystallography to overcome their limitations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!