The role of NADPH oxidase (Nox) in both the promotion and impairment of compensatory collateral growth remains controversial because the specific Nox and reactive oxygen species involved are unclear. The aim of this study was to identify the primary Nox and reactive oxygen species associated with early stage compensatory collateral growth in young, healthy animals. Ligation of the feed arteries that form primary collateral pathways in rat mesentery and mouse hindlimb was used to assess the role of Nox during collateral growth. Changes in mesenteric collateral artery Nox mRNA expression determined by real-time PCR at 1, 3, and 7 days relative to same-animal control arteries suggested a role for Nox subunits Nox2 and p47(phox). Administration of apocynin or Nox2ds-tat suppressed collateral growth in both rat and mouse models, suggesting the Nox2/p47(phox) interaction was involved. Functional significance of p47(phox) expression was assessed by evaluation of collateral growth in rats administered p47(phox) small interfering RNA and in p47(phox-/-) mice. Diameter measurements of collateral mesenteric and gracilis arteries at 7 and 14 days, respectively, indicated no significant collateral growth compared with control rats or C57BL/6 mice. Chronic polyethylene glycol-conjugated catalase administration significantly suppressed collateral development in rats and mice, implying a requirement for H2O2. Taken together, these results suggest that Nox2, modulated at least in part by p47(phox), mediates early stage compensatory collateral development via a process dependent upon peroxide generation. These results have important implications for the use of antioxidants and the development of therapies for peripheral arterial disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4024718 | PMC |
http://dx.doi.org/10.1152/ajpheart.00828.2013 | DOI Listing |
Eur J Pharmacol
December 2024
i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; FFUP - Faculty of Pharmacy of the University of Porto, 4050-313 Porto, Portugal. Electronic address:
Multidrug resistance (MDR) is a major challenge in cancer research. Collateral sensitizers, compounds that exploit the enhanced defense mechanisms of MDR cells as weaknesses, are a proposed strategy to overcome MDR. Our previous work reported the synthesis of two novel Isoquinolinequinone (IQQ) N-oxides that induce collateral sensitivity in MDR ABCB1-overexpressing non-small cell lung cancer (NSCLC) and colorectal cancer cells.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
October 2024
Chengdu University of Traditional Chinese Medicine Chengdu 610075, China.
This study aims to reveal the mechanism of Qijia Rougan Decoction(QJRG) and its disassembled formulas in mitigating hepatic fibrosis via the vascular endothelial growth factor(VEGF)/serum response factor(SRF)/c-FOS pathway and hepatic sinusoidal capillarization. Male Sprague-Dawley(SD) rats were randomized into a control group(n=6) and a modeling group(n=28). Hepatic fibrosis was induced by subcutaneous injection of 40% carbon tetrachloride(CCl_4) in olive oil.
View Article and Find Full Text PDFNeurol Ther
December 2024
Department of Neurology, Yijishan Hospital, Wannan Medical College, 2# Zheshan West Road, Wuhu, 241001, Anhui, China.
PLoS One
December 2024
Epidemiology of Mental Health Disorders and Ageing Research Group, Sant Joan de Déu Research Institute, Barcelona, Esplugues de Llobregat, Spain.
Background: Loneliness is related to worse mental health, particularly in people with poor social support. The COVID-19 pandemic altered our lives and ways of social interaction, especially among vulnerable populations such as older adults.
Methods: We designed a group-based psychosocial online intervention for older adults (≥ 65 years) facilitated by gerontologists addressing loneliness consisting of: (i) sharing experiences and promoting peer support to overcome feelings of loneliness and (ii) increasing the chances of establishing successful social relationships.
J Nat Prod
December 2024
School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan.
Syzygioblanes A-C (-), isolated from the Indonesian traditional herbal medicine (), are meroterpenoids with a spiro ring formed through a [4 + 2] cycloaddition of the flavanone desmethoxymatteucinol with cyclic sesquiterpenoids. Our ongoing phytochemical investigation of resulted in the isolation of five additional spiro-meroterpenoids, syzygioblanes D-H (-), which are hybrids of the same flavanone with eudesmane/cadinane-type sesquiterpenoids. A possible biosynthetic pathway involves enzymatic dearomative hydroxylation of desmethoxymatteucinol followed by [4 + 2] cyclization of the resulting diene with a cyclic sesquiterpene containing an exocyclic methylene to form the unique spiro ring in the syzygioblane molecule.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!